Description

Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.

Output

For each case, print the answer in one line.

Sample Input

3
5
1 2 3 4 5
3
2 3 3
4
2 3 3 2

Sample Output

105
21
38

题意:

定义Beauty数是一个序列里所有不相同的数的和,求一个序列所有字序列的Beauty和

题解:

按先后顺序将每个元素加入队列 然后计算

例:如果array【1,2,3】

1:    1              dp = 1;

2:    1 2

2          dp = 1+2*2;

3:    1 2 3

     2 3

     3    dp = 5+3*3;

一个不错的解释:

如果要求的是一段序列中连续子序列的个数,那么如果定义d[i]为以i结尾的连续子序列的个数,d[i]=d[i-1]+1;
我们定义d[i]为以i结尾的连续子序列的和,那么如果不重复d[i]=d[i-1]+a*i;
,如果重复的话,假设1 2 3  4 5 6 7。。。。。i,如果在第j位,那么(i i-1),(i,i-2),(i,i-3)。。。。(i,j+1)这些连续子序列的值可以加上a的值;
(i,j),(i,j-1),(i,j-2),(i,1),这些值都会包含重复的i,j位置上的值,因为只需要算一次,所以不需要给这些以i
结尾的子序列加上a,这些子序列的个数,总共有j个,所以我们只需要用一个数组A标记上A[a]=i;那么d[i]=d[i-1]+a+(i-1-A[a])*a;
如果a之前没有出现过,那么A[a]等于0;如果a之前出现过,减去包含重复值的子序列的个数,也就是A[a]。

代码:

#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <bitset>
#include <queue>
#include <deque>
#include <stack>
#include <iomanip>
#include <cstdlib>
#include <string>
using namespace std;
#define is_lower(c) (c>='a' && c<='z')
#define is_upper(c) (c>='A' && c<='Z')
#define is_alpha(c) (is_lower(c) || is_upper(c))
#define is_digit(c) (c>='0' && c<='9')
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define IO ios::sync_with_stdio(0);\
    cin.tie();\
    cout.tie();
#define For(i,a,b) for(int i = a; i <= b; i++)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef vector<int> vi;
const ll inf=0x3f3f3f3f;
;
const ll inf_ll=(ll)1e18;
const ll maxn=100005LL;
const ll mod=1000000007LL;
+;
int ans [N];int main()
{
    IO
    int T;
    cin>>T;
    while(T--)
    {
        int n;
        memset(ans,,sizeof(ans));
        cin>>n;
        ;
        ll res = ,dp = ;
        For(i,,n){
            int x;
            cin>>x;
                dp += x*(i-ans[x]);
            res += dp;
            ans[x] = i;
        }
        cout<<res<<endl;
    }
    ;
}

浙江省第十二届省赛 Beauty of Array(思维题)的更多相关文章

  1. 浙江省第十二届省赛 B - Team Formation

    Description For an upcoming programming contest, Edward, the headmaster of Marjar University, is for ...

  2. 湖南省第十二届省赛:Parenthesis

    Description Bobo has a balanced parenthesis sequence P=p1 p2…pn of length n and q questions. The i-t ...

  3. 2015 浙江省赛 Beauty of Array (思维题)

    Beauty of Array Edward has an array A with N integers. He defines the beauty of an array as the summ ...

  4. Beauty of Array(思维)

    Beauty of Array Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward has an array A with N integ ...

  5. HZNU第十二届校赛赛后补题

    愉快的校赛翻皮水! 题解 A 温暖的签到,注意用gets #include <map> #include <set> #include <ctime> #inclu ...

  6. 第十二届湖南省赛G - Parenthesis (树状数组维护)

    Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...

  7. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

  8. 第十二届湖南省赛 A - 2016 ( 数学,同余转换)

    给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量:       1. 1≤a≤n,1≤b≤m;   2. a×b 是 2016 的倍数.   Input   输入包含不超过 30 ...

  9. Little Sub and Traveling(杭师大第十二届校赛E题) 欧拉回路

    题目传送门 题目大意: 从0出发,每次只能跳到(i*2)%n或者(i*2+1)%n,求字典序最大的哈密顿回路. 思路: 首先n为奇数时无解,先来证明这一点. 先假设n为奇数,若要回到原点,则必定有一步 ...

随机推荐

  1. [Leetcode] candy 糖果

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

  2. 一个 React & Redux的目录树

    |-----------------------------------------| | | | React & Redux | | | |------------------------- ...

  3. 你是否彻底了解margin属性?

    写css,你少不了与margin打交道.你真的了解margin吗?你知道margin有什么特性吗?你知道什么是垂直外边距合并?margin在块元素.内联元素中的区别?什么时候该用padding而不是m ...

  4. MySQL使用笔记(一)安装配置

    By francis_hao    Nov 27,2016   一般软件的安装都是可以通过源码和安装包安装,源码安装可配置性好些,安装包安装比较省事,况且使用yum也可以解决依赖的问题,基本实现了一键 ...

  5. github导入springboot maven项目

    1.在GitHub里force喜欢的项目,获取GitHub项目地址,eclipse---import---project from git---clone uri---next---finish,项目 ...

  6. ibeacon UUID

    import sys; import uuid; s=uuid.uuid4().hex #s="f6bc15e0939046679be1866ec8a199dc" sys.stdo ...

  7. SynchronizationContext.Post方法 代替

    http://www.codeproject.com/KB/threads/SynchronizationContext.aspx看吧,不好,就将就的看下我的吧,呵呵!(没有直接翻译,不过大概的思路相 ...

  8. 在线输入RGB更改背景色

    HTML: <!DOCTYPE html><html> <head> <meta http-equiv="Content-Type" co ...

  9. 解读dbcp自动重连那些事

    转载自:http://agapple.iteye.com/blog/791943 可以后另一篇做对比:http://agapple.iteye.com/blog/772507 同样的内容,不同的描述方 ...

  10. 51Nod 2006 飞行员配对(二分图最大匹配)-匈牙利算法

    2006 飞行员配对(二分图最大匹配) 题目来源: 网络流24题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 第二次世界大战时期,英国皇家空军从沦陷国 ...