luogu P1291 [SHOI2002]百事世界杯之旅
题目链接
题解
设\(f[k]\)表示还有\(k\)个球员没有收集到的概率
再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k) /k\)
那么\(f[k] = f[k]*(n-k)/n + f[k-1]*k/n + 1\)
移向一下\(f[k] = f[k-1] + n/k\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c <= '9' && c >='0') x = x * 10 + c - '0',c = getchar();
return x*f;
}
#define LL long long
LL gcd(LL x,LL y) {return y == 0 ? x : gcd(y,x % y);}
int n;
int main() {
n = read();
LL fz = n, fm = 1,Tfz,Tfm;
for(int i = 2;i <= n;++ i) {
Tfz = n,Tfm = i;
LL _gcd = gcd(Tfm,fm);
fz = fz * (Tfm / _gcd) + Tfz * (fm / _gcd);
fm *= (Tfm/_gcd);
_gcd = gcd(fz,fm);
fz /= _gcd,fm /= _gcd;
}
if(fm == 1) {printf("%lld",fz);return 0;}
LL x = fz / fm;fz %= fm;
LL tx = x,cnt=0;
while(tx) cnt ++,tx /= 10;
for(int i = 1;i <= cnt;++ i) printf(" ");
printf("%lld\n",fz);
if(x) printf("%lld",x);
tx = fm;
while(tx) printf("-"),tx /= 10; printf("\n");
for(int i = 1;i <= cnt;++ i) printf(" ");
printf("%lld",fm);
return 0;
}
luogu P1291 [SHOI2002]百事世界杯之旅的更多相关文章
- LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)
传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...
- P1291 [SHOI2002]百事世界杯之旅(概率)
P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...
- 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告
P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]
题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...
- P1291 [SHOI2002]百事世界杯之旅
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP
题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...
- ●洛谷P1291 [SHOI2002]百事世界杯之旅
题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅
题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...
随机推荐
- 【NOIP模拟赛】公主的朋友 区间染色问题
这道题大家都用的分块,然而我发现这是一个经典算法:区间染色问题. 我们区间染色时把区间分成若干连续的颜色段,然后我们每次染色删除原来的颜色段插入新的颜色段. 我们发现我们的时间复杂度直接与我们要染色区 ...
- nodejs 喜欢报cannot find module .....的简单解决方案
在安装nodejs后使用命令npm install <package_name>一直喜欢报cannot find module........ 因为我之前在我的电脑上安装过nodejs,当 ...
- Android布局优化思考
一.关于RelativeLayout和LinearLayout的使用 由源码可以知道,RelativeLayout需要对其子View进行两次measure过程,而LinearLayout只需一次mea ...
- jquery学习之事件委派
一.定义 事件委派的定义就是,把原来加给子元素身上的事件绑定在父元素身上,就是把事件委派给父元素. 二.版本 从jQuery1.7开始,jQuery引入了全新的事件绑定机制,on()和off()两个函 ...
- jquery序列化表单
没有使用其他的东西 , 数据传送是最基本的. 前台: var info = $('#dataForm').serialize() ; alert(decodeURIComponent(info,tru ...
- 动态规划:LCIS
先给出状态转移方程: 定义状态 F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度 状态转移方程: ①F[i][j] = F[i-][j] (a[i] != ...
- tr/td
在HTML中,tr代表行,td代表列. 说明: 1.tr与td必须一起使用,并且输入的内容必须在td里面: 2.td必须在tr里面,表示在一行中的列: 3.在一个tr里面,有x个td,就表示在这一行里 ...
- 51nod 1254 最大子段和 V2 ——单调栈
N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...
- [POJ1113&POJ1696]凸包卷包裹算法和Graham扫描法应用各一例
凸包的算法比较形象好理解 代码写起来也比较短 所以考前看一遍应该就没什么问题了..>_< POJ1113 刚开始并没有理解为什么要用凸包,心想如果贴着城堡走不是更好吗? 突然发现题目中有要 ...
- 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整
[算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...