题目链接

luogu P1291 [SHOI2002]百事世界杯之旅

题解

设\(f[k]\)表示还有\(k\)个球员没有收集到的概率

再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k) /k\)

那么\(f[k] = f[k]*(n-k)/n + f[k-1]*k/n + 1\)

移向一下\(f[k] = f[k-1] + n/k\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm> inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c <= '9' && c >='0') x = x * 10 + c - '0',c = getchar();
return x*f;
}
#define LL long long
LL gcd(LL x,LL y) {return y == 0 ? x : gcd(y,x % y);}
int n;
int main() {
n = read();
LL fz = n, fm = 1,Tfz,Tfm;
for(int i = 2;i <= n;++ i) {
Tfz = n,Tfm = i;
LL _gcd = gcd(Tfm,fm);
fz = fz * (Tfm / _gcd) + Tfz * (fm / _gcd);
fm *= (Tfm/_gcd);
_gcd = gcd(fz,fm);
fz /= _gcd,fm /= _gcd;
}
if(fm == 1) {printf("%lld",fz);return 0;}
LL x = fz / fm;fz %= fm;
LL tx = x,cnt=0;
while(tx) cnt ++,tx /= 10;
for(int i = 1;i <= cnt;++ i) printf(" ");
printf("%lld\n",fz);
if(x) printf("%lld",x);
tx = fm;
while(tx) printf("-"),tx /= 10; printf("\n");
for(int i = 1;i <= cnt;++ i) printf(" ");
printf("%lld",fm);
return 0;
}

luogu P1291 [SHOI2002]百事世界杯之旅的更多相关文章

  1. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  2. P1291 [SHOI2002]百事世界杯之旅(概率)

    P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...

  3. 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告

    P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...

  4. 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]

    题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...

  5. P1291 [SHOI2002]百事世界杯之旅

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  6. 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  7. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  8. ●洛谷P1291 [SHOI2002]百事世界杯之旅

    题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...

  9. 洛谷P1291 [SHOI2002]百事世界杯之旅

    题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...

随机推荐

  1. 使用JMeter进行一次简单的带json数据的post请求测试

    使用JMeter进行一次简单的带json数据的post请求测试 原文:https://www.cnblogs.com/summer-mm/p/7717812.html 1.启动jmeter:在bin下 ...

  2. C#与数据库的连接的三种方式

    学习了.net的知识从C#一直到MVC,我一直觉得基础很重要,最近有复习一下数据库连接的三种方式 1 返回结果集的一张表 public static DataTable ExecuteDataTabl ...

  3. POJ 1320 Street Numbers 解佩尔方程

    传送门 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2529   Accepted: 140 ...

  4. DP---背包问题

    http://www.hawstein.com/posts/dp-knapsack.html http://www.cnblogs.com/wwwjieo0/archive/2013/04/01/29 ...

  5. 数学:乘法逆元-拓展GCD

    乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用 给出拓展GCD算法: 扩展欧几里得算法是指对于两个数a,b 一定能找到x,y(均为整数,但不满足一定是正数) 满足x*a+y*b=gcd(a ...

  6. RPC-Thrift(二)

    TTransport TTransport负责数据的传输,先看类结构图. 阻塞Server使用TServerSocket,它封装了ServerSocket实例,ServerSocket实例监听到客户端 ...

  7. bzoj1036: [ZJOI2008]树的统计Count link-cut-tree版

    题目传送门 这 算是link-cut-tree裸题啊 不过以前好像没有写过单点修改.............. #include<cstdio> #include<cstring&g ...

  8. mysql 等 null 空值排序

    [sqlserver]: sqlserver 认为 null 最小. 升序排列:null 值默认排在最前. 要想排后面,则:order by case when col is null then 1 ...

  9. bzoj1053 搜索

    2013-11-16 17:43 原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1053 因为使pi(prime[i])<20亿的i不 ...

  10. centOS 7 部署samba

    部署samba **每个用户有自己的目录,可以浏览内容,也可以删除** 清空防火墙规则 [root@bogon ~]# iptables -F 安装samba [root@bogon ~]# yum ...