luogu P1291 [SHOI2002]百事世界杯之旅
题目链接
题解
设\(f[k]\)表示还有\(k\)个球员没有收集到的概率
再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k) /k\)
那么\(f[k] = f[k]*(n-k)/n + f[k-1]*k/n + 1\)
移向一下\(f[k] = f[k-1] + n/k\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c <= '9' && c >='0') x = x * 10 + c - '0',c = getchar();
return x*f;
}
#define LL long long
LL gcd(LL x,LL y) {return y == 0 ? x : gcd(y,x % y);}
int n;
int main() {
n = read();
LL fz = n, fm = 1,Tfz,Tfm;
for(int i = 2;i <= n;++ i) {
Tfz = n,Tfm = i;
LL _gcd = gcd(Tfm,fm);
fz = fz * (Tfm / _gcd) + Tfz * (fm / _gcd);
fm *= (Tfm/_gcd);
_gcd = gcd(fz,fm);
fz /= _gcd,fm /= _gcd;
}
if(fm == 1) {printf("%lld",fz);return 0;}
LL x = fz / fm;fz %= fm;
LL tx = x,cnt=0;
while(tx) cnt ++,tx /= 10;
for(int i = 1;i <= cnt;++ i) printf(" ");
printf("%lld\n",fz);
if(x) printf("%lld",x);
tx = fm;
while(tx) printf("-"),tx /= 10; printf("\n");
for(int i = 1;i <= cnt;++ i) printf(" ");
printf("%lld",fm);
return 0;
}
luogu P1291 [SHOI2002]百事世界杯之旅的更多相关文章
- LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)
传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...
- P1291 [SHOI2002]百事世界杯之旅(概率)
P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...
- 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告
P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]
题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...
- P1291 [SHOI2002]百事世界杯之旅
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP
题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...
- ●洛谷P1291 [SHOI2002]百事世界杯之旅
题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅
题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...
随机推荐
- fis难用的地方
1. 刷新不同步,刷新的结果是前一次的修改结果2. 刷新时间非常长3. 有些代码打包不兼容,例如tween这个库,有函数yoyo:function yoyo(yoyo){}的形式,不能正确打包,会报[ ...
- 【BZOJ3674】可持久化并查集加强版
可持久化并查集我觉得就是可持久化数组的一种应用.可持久化数组,顾名思义,就是有历史版本的数组,那么如果我们暴力修改储存的话,修改O(n)查询O(1),空间O(n*m),这样肯定不可行,那么我们发现主席 ...
- 有关spring的各种下载资料的网站
spring的文件和jar包下载的网站: https://repo.spring.io/release/org/springframework/spring/ spring 各个版本源码下载的资料: ...
- import pymongo exceptions.ImportError: No module named pymongo
最近用Scrapy写爬虫,将爬取的数据存入Mongodb中,使用的是pymongo这个库,但是运行的时候报错如标题所示 搜了好多网站包括stackoverflow都没有解决,后来发现自己用的是虚拟环境 ...
- dbcp重连问题排查
转载自:http://lc87624.iteye.com/blog/1734089 使用数据库连接池时,免不了会遇到断网.数据库挂掉等异常状况,当网络或数据库恢复时,若无法恢复连接池中的连接,那必然会 ...
- PHP代码优化小笔记
1.十万级以上次执行情况,方法可以被静态化,考虑声明为静态.html静态页面速度更快 2.echo 替换print:echo时逗号连接符替换点号连接符 3.循环之前设置循环最大次数,循环参数不要使用函 ...
- mybatis基本流程、jdbc连接、ps:附mybatis(乐观锁)实现
一.前言 Mybatis和Hibernate一样,是一个优秀的持久层框架.已经说过很多次了,原生的jdbc操作存在大量的重复性代码(如注册驱动,创建连接,创建statement,结果集检测等).框架的 ...
- 【spoj1811 & spoj1812 - LCS1 & LCS2】sam
spoj1811 给两个长度小于100000的字符串 A 和 B,求出他们的最长公共连续子串. 先将串 A 构造为 SAM ,然后用 B 按如下规则去跑自动机.用一个变量 lcs 记录当前的最长公共 ...
- Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?
Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?本文围绕这些问题进行了探讨. 1.Java序列化与反序列化 Java序列化是指把Java对象转换为字节 ...
- 河南省第十届省赛 Binary to Prime
题目描述: To facilitate the analysis of a DNA sequence, a DNA sequence is represented by a binary num ...