暴力dp是n^2*m的……我们计算每棵树在每层的答案的时候,都需要计算出从那棵树转移过来最优。

但是我们发现,对一棵树而言,从上面转移过来都是一样的,所以我们可以在计算每棵树在每层的答案的时候,先预处理出它应该从上面何处转移过来,消掉一个n。

 #include<cstdio>
#include<algorithm>
using namespace std;
#define N 2001
int delta,n,h,m,a[N][N],f[N][N],ans;
int main()
{
freopen("bzoj1270.in","r",stdin);
scanf("%d%d%d",&n,&h,&delta);
for(int i=;i<=n;i++)
{
scanf("%d",&m);
for(int j=;j<=m;j++)
{
int t; scanf("%d",&t);
a[i][t]++;
}
}
for(int i=h;i>=;--i)//枚举高度
{
int mx=;
for(int j=;j<=n;++j)//枚举树,预处理出该层的最大值
mx=max(mx,i+delta>h ? : f[j][i+delta]);
for(int j=;j<=n;++j)//枚举树,计算出所有树在该层的答案
f[j][i]=max(mx,f[j][i+])+a[j][i];
}
for(int i=;i<=n;i++) ans=max(ans,f[i][]);
printf("%d\n",ans);
return ;
}

【动态规划】bzoj1270 [BeijingWc2008]雷涛的小猫的更多相关文章

  1. BZOJ1270: [BeijingWc2008]雷涛的小猫

    1270: [BeijingWc2008]雷涛的小猫 Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 836  Solved: 392[Submit][ ...

  2. bzoj1270 BeijingWc2008 雷涛的小猫 DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1270 比较水的一道dp f1[i]为高度为i的时候的最大值 f2[i]为当前高度在第i棵树 ...

  3. BZOJ 1270: [BeijingWc2008]雷涛的小猫( dp )

    简单的dp.. dp(i,j) = max(dp(x,y))+cnt[i][j], (x,y)->(i,j)是合法路径. 设f(i)= max(dp(x,y))(1≤x≤N, 1≤y≤i), g ...

  4. 1270: [BeijingWc2008]雷涛的小猫

    1270: [BeijingWc2008]雷涛的小猫 Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 905  Solved: 430[Submit][ ...

  5. [BeijingWc2008]雷涛的小猫

    --BZOJ1270 Description 雷涛的小猫雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的). 在他的照顾下,小猫很快恢复了健康 ...

  6. bzoj 1270: [BeijingWc2008]雷涛的小猫 简单dp+滚动数组

    1270: [BeijingWc2008]雷涛的小猫 Time Limit: 50 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descrip ...

  7. [bzoj 1270][BeijingWc2008]雷涛的小猫

    Description 雷涛的小猫雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学 生宿舍管理条例的).  在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可 ...

  8. BZOJ1270[BJWC2008]雷涛的小猫

    雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的).在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了. 可是有一天,雷涛下课回到寝室,却 ...

  9. B1270 [BeijingWc2008]雷涛的小猫 dp

    这个题的原始方法谁都会,但是n^3会T.之后直接优化,特别简单,就是每次处理出来每层的最大值,而不用枚举.之前没这么做是因为觉得在同一棵树的时候没有下落,所以不能用这个方法.后来想明白了,在同一棵树上 ...

随机推荐

  1. Dilworth定理证明

    命题:偏序集能划分成的最少的全序集的个数与最大反链的元素个数相等. (离散数学结构第六版课本P245:把一个偏序集划分成具有全序的子集所需要的最少子集个数与元素在偏序下都是不可比的最大集合的基数之间有 ...

  2. 如何取消PPT中的动画效果

    幻灯片放映——>设置放映式——>勾选放映时不加动画 (office2007)

  3. Python之json编码

    一.json JSON: JavaScript Object Notation(JavaScript 对象表示法) JSON 是存储和交换文本信息的语法 1.json轻量级:语法规则 JSON 语法是 ...

  4. Java面向对象编程三大特性 --- 多态

    多态特性: 子类Child继承父类Father,我们可以编写一个指向子类的父类类型引用,该引用既可以处理父类Father对象,也可以处理子类Child对象,当相同的消息发送给子类或者父类对象时,该对象 ...

  5. koala 编译scss不支持中文解决方案

    方法一: 在scss文件第一行加上代码:@charset "utf-8"; 方法二: 进入到Koala 安装目录 C:\Koala\rubygems\gems\sass-3.4.9 ...

  6. 组合数学--Polya 原理及典型应用

    Redfield-Polya (Pólya enumeration theorem,简称PET)定理是组合数学理论中最重要的定理之一.自从 1927 年 Redfield 首次运用 group red ...

  7. shell正则表达式(1)

    一.什么是正则 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. 二.grep 1.参数 -n  :显示行号 -o  : ...

  8. bzoj1861 书架 splay版

    单点插入删除以及求前缀 #include<cstdio> #include<cstring> #include<algorithm> using namespace ...

  9. poj 1528 Perfection

    题目链接:http://poj.org/problem?id=1528 题目大意:输入一个数n,然后求出约数的和sum,在与这一个数n进行比较,如果sum>n,则输出ABUNDANT,如果sum ...

  10. MongoDB简介以及下载安装

    什么是MongoDB ? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统.运行稳定,性能高 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在 ...