题目链接

BZOJ5340

题解

我们能很容易维护每个人当前各种血量的概率

设\(p[u][i]\)表示\(u\)号人血量为\(i\)的概率

每次攻击的时候,讨论一下击中不击中即可转移

是\(O(Qm^2)\)的

现在考虑一下结界

如果我们设\(f[u][i]\)表示除了\(u\)还存活\(i\)个人的概率

那么

\[ans[u] = (1 - p[u][0]) \sum\limits_{i = 0}^{k - 1} \frac{f[u][i]}{i + 1}
\]

所以我们只需计算\(f[u][i]\)

\(f[u][i]\)同样可以通过枚举剩余每个人存活与否进行转移,是\(O(n^3)\)的,复杂度过高

我们考虑计算\(g[i]\)表示剩余\(i\)人的概率

枚举\(u\)

\[g'[i] = g[i]p[u][0] + g[i - 1](1 - p[u][0])
\]

即可\(O(n^2)\)计算\(g[i]\)

如果我们拿\(f[u][i]\)来计算\(g[i]\)的话

\[g[i] = f[u][i]p[u][0] + f[u][i - 1](1 - p[u][0])
\]

那么

\[f[u][i] = \frac{g[i] - f[u][i - 1](1 - p[u][0])}{p[u][0]}
\]

也可以\(O(n^2)\)递推

这样我们就做完了

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 205,maxm = 105,INF = 1000000000,P = 998244353;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL p[maxn][maxm],f[maxn][maxn],g[maxn][maxn],n,m[maxn],id[maxn];
LL INV[maxn];
inline LL qpow(LL a,LL b){
LL ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline LL inv(int x){
if (x <= n) return INV[x];
return qpow(x,P - 2);
}
int main(){
n = read();
REP(i,n) m[i] = read(),p[i][m[i]] = 1;
INV[0] = 1; INV[1] = 1;
for (int i = 2; i <= n; i++) INV[i] = 1ll * (P - P / i) * INV[P % i] % P;
LL Q = read(),opt,u,v,pp,x,k;
while (Q--){
opt = read();
if (!opt){
x = read(); u = read(); v = read(); pp = u * inv(v) % P;
p[x][0] = (p[x][0] + pp * p[x][1] % P) % P;
for (int i = 1; i <= m[x]; i++)
p[x][i] = ((p[x][i] * (1 - pp) % P + p[x][i + 1] * pp % P) % P + P) % P;
}
else {
k = read();
cls(g); g[0][0] = 1;
for (int i = 1; i <= k; i++){
u = id[i] = read();
g[i][0] = g[i - 1][0] * p[u][0] % P;
for (int j = 1; j <= i; j++){
g[i][j] = ((g[i - 1][j] * p[u][0] % P + g[i - 1][j - 1] * (1 - p[u][0]) % P) % P + P) % P;
}
}
for (int i = 1; i <= k; i++){
u = id[i];
LL ans = 0,Inv = inv(p[u][0]);
if (!p[u][0]){
for (int j = 0; j < k; j++)
f[u][j] = g[k][j + 1];
}
else {
f[u][0] = 1ll * g[k][0] * Inv % P;
for (int j = 1; j < k; j++){
f[u][j] = (1ll * (g[k][j] - 1ll * f[u][j - 1] * (1 - p[u][0]) % P) % P * Inv % P + P) % P;
}
}
for (int j = 0; j < k; j++){
ans = (ans + 1ll * f[u][j] * inv(j + 1) % P) % P;
}
ans = (1ll * ans * (1ll - p[u][0]) % P + P) % P;
printf("%lld",ans);
if (i < k) putchar(' ');
else puts("");
}
}
}
for (int i = 1; i <= n; i++){
LL ans = 0;
for (int j = 1; j <= m[i]; j++)
ans = (ans + 1ll * j * p[i][j] % P) % P;
printf("%lld",ans);
if (i < n) putchar(' ');
else puts("");
}
return 0;
}

BZOJ5340 [Ctsc2018]假面 【概率dp】的更多相关文章

  1. [CTSC2018]假面(概率DP)

    考场上以为CTSC的概率期望题都不可做,连暴力都没写直接爆零. 结果出来发现全场70以上,大部分AC,少于70的好像极少,感觉血亏. 设a[i][j]表示到当前为止第i个人的血量为j的概率(注意特判血 ...

  2. BZOJ5340: [Ctsc2018]假面

    BZOJ5340: [Ctsc2018]假面 https://lydsy.com/JudgeOnline/problem.php?id=5340 分析: 背包,只需要求\(g_{i,j}\)表示强制活 ...

  3. BZOJ5340: [Ctsc2018]假面【概率+期望】【思维】

    LINK 思路 首先考虑减血,直接一个dp做过去,这个部分分不难拿 然后是\(op=1\)的部分 首先因为要知道每个人被打的概率,所以需要算出这个人活着的时候有多少个人活着时概率是什么 那么用\(g_ ...

  4. [CTSC2018] 假面 | 期望 DP

    题目链接 LOJ 2552 Luogu P4564 考场上这道题我先是写了个70分暴力,然后发现似乎可以NTT,然鹅问题是--我没学过NTT,遂脑补之,脑补出来了,下午出成绩一看,卡成暴力分(70)- ...

  5. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  6. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  7. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  8. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  9. 概率DP light oj 1030

    t组数据 n块黄金 到这里就捡起来 出发点1 到n结束  点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6  如果满6个的话 否则 ...

随机推荐

  1. Asp.Net Core 生成图形验证码

    前几天有朋友问我怎么生成图片验证码,话不多说直接上代码. 支持.NET CORE开源.助力.NET Core社区发展. using System; using System.IO; using Sys ...

  2. Yii2.0 游客访问限制(转)

    最近在用Yii2.0做项目,其中需要实现一个功能:没有登录不能访问部分页面,即游客身份访问限制.查了半天资料,终于找到答案.解决方法如下: 在access里,access即访问的意思,其中有个配置项 ...

  3. web学习第一天

    学习web心得 表格 table,表单 form,跑马灯效果 marquee,导入背景图片<img src="图片路径"> 第一天学的不是很难,作业也相对来说比较简单, ...

  4. 以源码安装的lamp环境为依托,源码安装zabbix监控系统

    1.源码安装lamp环境 1)安装httpd, 以源码httpd-2.4.33为基础,解压后,执行./configure --prefix=/usr/local/ --sysconfdir=/etc/ ...

  5. 51定时器控制4各led,使用回调函数机制

    程序转载自51hei,经过自己的实际验证,多了一种编程的思路技能,回调函数的基本思想也是基于事件机制的,哪个事件来了, 就执行哪个事件. 程序中,最多四个子定时器,说明51的处理速度是不够的,在中断中 ...

  6. JAVA 泛型方法<T>

    public static void main(String[] args) throws Exception { String[] arr = new String[]{"1", ...

  7. Black And White (DFS 训练题)

    G - Black And White ================================================================================ ...

  8. java 第六章 面向对象基础

    1.面向对象编程思想 面向过程编程 传统的C语言属于面向过程编程.面向过程解决问题的思路:通常是分析出解决问题所需要的步骤,然后用方法把这些步骤一步一步实现,最后一个一个依次调用方法来解决. 面向过程 ...

  9. vue 项目如何使用微信分享接口

    首先做微信网页都要接入微信sdk: 安装sdk npm install weixin-js-sdk --save 具体可以查看微信公众平台技术文档:https://mp.weixin.qq.com/w ...

  10. 5-sql语句

    1 [oracle@ocp ~]$ . oraenv # ORACLE_SID = [oracle] ? orcl The Oracle base has been set to /u01/app/o ...