Time Limit: 1 Sec  Memory Limit: 256 MB
Submit: 390  Solved: 217
[
Submit][Status][Discuss]

Description

有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作:

1. 选择一行, 该行每个格子的权值加1或减1。

2. 选择一列, 该列每个格子的权值加1或减1。

现在有K个限制,每个限制为一个三元组(x,y,c),代表格子(x,y)权值等于c。问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。如果存在输出”Yes”,否则输出”No”。

Input

先输入一个T(T <= 5)代表输入有T组数据,每组数据格式为:

第一行三个整数n, m, k (1 <= n, m,k <= 1000)。

接下来k行,每行三个整数x, y, c。

Output

对于每组数据,输出Yes或者No。

Sample Input

2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 1

Sample Output

Yes
No

HINT

Source

【题解】

    ①行列差分约束。

    ②每个行每个列看做一个点。

    ③建立超级源点保证图连通,进行一次SPFA即可解决。

#include<queue>
#include<stdio.h>
#define inf 1000000007
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
const int N=2010;
struct E{int v,next,w;}e[N<<2];
int T,n,m,K,head[N],k,x,y,v,S,d[N],vis[N];bool inq[N],bad;
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;} bool SPFA()
{
std::queue<int>q;d[S]=0;
while(!q.empty())q.pop();q.push(S);int u;
while(!q.empty())
{
inq[u=q.front()]=0;q.pop();
fo(i,head,u)if(d[u]+e[i].w<d[v])
{
d[v]=d[u]+e[i].w;
if((++vis[v])>(n+m))return 0;
if(!inq[v])inq[v]=1,q.push(v);
}
}
return 1;
} int main()
{
scanf("%d",&T);
while(T--&&scanf("%d%d%d",&n,&m,&K))
{
go(i,0,n+m)d[i]=inf,head[i]=inq[i]=vis[i]=0;bad=0;k=1;
go(i,1,K)scanf("%d%d%d",&x,&y,&v),ADD(x,y+n,v),ADD(y+n,x,-v);
go(i,1,n+m)ADD(S,i,0);puts(SPFA()?"Yes":"No");
}
return 0;
}//Paul_Guderian

.

【BZOJ 4500 矩阵】的更多相关文章

  1. BZOJ 4500: 矩阵

    4500: 矩阵 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 326  Solved: 182[Submit][Status][Discuss] De ...

  2. BZOJ 4500: 矩阵 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4500 题解: 从行向列建边,代表一个格子a[i][j],对每个顶点的所有操作可以合并在一 ...

  3. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  4. bzoj 4500: 矩阵 差分约束系统

    题目: Description 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 选择一行, 该行每个格子的权值加1或减1. 选择一列, 该列每个格子的权值加1或减1. 现在有K ...

  5. bzoj 4500 矩阵 题解

    题意: 有一个 $ n * m $ 的矩阵,初始每个格子的权值都为 $ 0 $,可以对矩阵执行两种操作: 选择一行,该行每个格子的权值加1或减1. 选择一列,该列每个格子的权值加1或减1. 现在有 $ ...

  6. bzoj 4500: 矩阵【差分约束】

    (x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...

  7. BZOJ 4500: 矩阵 带权并查集

    这个思路挺巧妙的 ~ 定义一行/列的权值为操作后所整体增加的值. 那么,我们会有若干个 $a[x]+b[y]=c$ 的限制条件. 但是呢,我们发现符号是不能限制我们的(因为可加可减) 所以可以将限制条 ...

  8. [BZOJ 2738] 矩阵乘法 【分块】

    题目链接:BZOJ - 2738 题目分析 题目名称 “矩阵乘法” 与题目内容没有任何关系..就像VFK的 A+B Problem 一样.. 题目大意是给定一个矩阵,有许多询问,每次询问一个子矩阵中的 ...

  9. [BZOJ]1059 矩阵游戏(ZJOI2007)

    虽然说是一道水题,但小C觉得还是挺有意思的,所以在这里mark一下. Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N*N黑白 ...

随机推荐

  1. python-三级菜单的优化实现

    三级菜单需求: 1.可依次选择进入各子菜单 2.可从任意一层往回退到上一层 3.可从任意一层退出程序 所需新知识点:列表.字典 先通过字典建立数据结构 #创建字典 city_dic = { " ...

  2. STM32CubeMx配置SPI注意的一个问题

    这样配置SPI引脚 然后这样配置SPI参数 生成立这样的配置代码 /* SPI2 init function */static void MX_SPI2_Init(void){ /* SPI2 par ...

  3. grunt in webstorm

    1.install grunt sudo npm install -g grunt-cli npm install grunt --save-dev

  4. dfs Gym - 100989L

    AbdelKader enjoys math. He feels very frustrated whenever he sees an incorrect equation and so he tr ...

  5. NSOperation那点事儿

    1. NSOperation.NSOperationQueue 简介 NSOperation.NSOperationQueue 是苹果提供给我们的一套多线程解决方案.实际上 NSOperation.N ...

  6. 【多线程】 Task

    [多线程] Task 一. 常用方法: 1. ContinueWith : 当前 Task 完成后, 执行传入的 Task 2. Delay : 创建一个等待的 Task,只有在调用 Wait 方法时 ...

  7. Java byte 位移操作 注意事项

    转自:http://blog.163.com/pilgrim_yang/blog/static/55631481201111542151582/ Java对byte 的 + - * / >> ...

  8. PHP管理供下载的APK文件

    当我们开发的APP多的时候,把所有的APK文件统一放到一个目录中管理,是一个不错的选择: 管理的方法有很多,这里说一种: 1..创建目录结构,先创建根目录download,在根目录中创建项目目录,在项 ...

  9. (原创)最小生成树之Prim(普里姆)算法+代码详解,最懂你的讲解

    Prim算法 (哈欠)在创建最小生成树之前,让我们回忆一下什么是最小生成树.最小生成树即在一个待权值的图(即网结构)中用一个七拐八绕的折线串连起所有的点,最小嘛,顾名思义,要权值相加起来最小,你当然可 ...

  10. Bellman_ford标准算法

    Bellman_ford求最短路可以说这个算法在某些地方和dijkstra还是有些相似的,它们的松弛操作基本还是一样的只不过dijkstra以图中每个点为松弛点对其相连接的所有边进行松弛操作 而Bel ...