SDUT OJ 图结构练习——最短路径 ( Floyed 算法 AND Dijkstra算法)
图结构练习——最短路径
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
给定一个带权无向图,求节点1到节点n的最短路径。
Input
输入包含多组数据,格式如下。
第一行包括两个整数n m,代表节点个数和边的个数。(n<=100)
剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c。
Output
每组输出占一行,仅输出从1到n的最短路径权值。(保证最短路径存在)
Sample Input
3 2
1 2 1
1 3 1
1 0
Sample Output
1
0
Floyd算法:
#include<bits/stdc++.h>
#define Maxn 0x3f3f3f3f
using namespace std;
int Map[201][201], vis[201];
int n, m;
void Floyd()
{
for(int k = 1; k <= n; k++)
{
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(Map[i][j] > (Map[i][k] + Map[k][j]))
Map[i][j] = Map[i][k] + Map[k][j];
}
}
}
}
int main()
{
while(cin >> n >> m)
{
int a, b, c;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
if(i == j)
Map[i][j] = 0;
else
Map[i][j] = Maxn;
}
}
for(int i = 0; i < m; i++)
{
cin >> a >> b >> c;
if(Map[a][b] > c)
{
Map[a][b] = Map[b][a] = c;
}
}
Floyd();
cout << Map[1][n] << endl;
}
return 0;
}
Dijkstra算法:
#include <iostream>
#include <queue>
#define INF 999999
#define ERROR -1
using namespace std;
int n, m, s, d;
int Map[1001][1001];
int Min, i, j;
int V, W;
bool collected[1001];
int dist[1001];
int FindMinDist( )
{
Min = INF;
for(i=1; i<=n; i++)
if( !collected[i] && dist[i] < Min )
{
Min = dist[i];
V = i;
}
if( Min == INF )
V = ERROR;
return V;
}
void Dijkstra( int s )
{
dist[s] = 0;
while(1)
{
V = FindMinDist( );
if( V == ERROR )
break;
collected[V] = true;
for( W=1; W<=n; W++ )
if( collected[W] == false && Map[V][W] < INF )
{
if( dist[V] + Map[V][W] < dist[W] )
{
dist[W] = dist[V] + Map[V][W];
}
}
}
}
int main()
{
while(cin >> n >> m)
{
int a, b, c;
for( i = 1; i <= n; i++)
{
for( j = 1; j <= n; j++)
{
if(i == j)
Map[i][j] = 0;
else
Map[i][j] = INF;
}
}
for(i=1; i<=n; i++)
{
dist[i] = INF;
collected[i] = false;
}
for( i = 1; i <= m; i++ )
{
cin >> a >> b >> c;
if(Map[a][b] > c)
{
Map[a][b] = Map[b][a] = c;
}
}
Dijkstra(1);
cout << dist[n] << endl;
}
return 0;
}
关于这两种算法:最短路径 Dijkstra算法 AND Floyd算法
SDUT OJ 图结构练习——最短路径 ( Floyed 算法 AND Dijkstra算法)的更多相关文章
- 图结构练习——最短路径(dijkstra算法(迪杰斯拉特))
图结构练习——最短路径 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 给定一个带权无向图,求节点1到节点n的最短路径. ...
- 图结构练习——最短路径(floyd算法(弗洛伊德))
图结构练习——最短路径 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 给定一个带权无向图,求节点1到节点n的最短路径. 输 ...
- 数据结构与算法系列研究七——图、prim算法、dijkstra算法
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...
- 最短路径算法(Dijkstra算法、Floyd-Warshall算法)
最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确 ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
- 最短路经算法简介(Dijkstra算法,A*算法,D*算法)
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等.美国火星探测器核心的寻路算法就是采用的D*(D Star)算法. 最短路经计算分静态 ...
- 算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijk ...
- 图中最短路径算法(Dijkstra算法)(转)
1.Dijkstra 1) 适用条件&范围: a) 单源最短路径(从源点s到其它所有顶点v); b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E ...
- 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析
什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...
随机推荐
- [原创]Java使用反射及自定义注解实现对象差异性比较
Java项目C中 有一处逻辑,对于资源数据(类型为ResourceItem,拥有int/double/boolean/String类型数十个字段),需要比对资源数据每次变更的差异,并描述出变更情况.并 ...
- chart左侧
左侧单位 Chart1.Axes.Left.Minimum := ; Chart1.Axes.Left.Maximum := Series1.YValues.MaxValue * ; Chart1.A ...
- 微信小程序中的倒计时
这是我项目中的例子,如果有更好的建议欢迎留言 ,一起学习 //获取时间 var sekillStartTime = resultLis[0].planGroup0.sekillStartTime;// ...
- mysql中的 函数
- Xcode迁移工程常见问题
[Xcode迁移工程常见问题] 1.Header Search Paths (HEADER_SEARCH_PATHS) 是否设置正确.在Search Paths group下. 2.Framework ...
- Linux开机启动详解
Linux开机启动程序详解 我们假设大家已经熟悉其它操作系统的引导过程,了解硬件的自检引导步骤,就只从Linux操作系统的引导加载程序(对个人电脑而言通常是LILO)开始,介绍Linux开机引导的步骤 ...
- 使用百度翻译的API接口
http://api.fanyi.baidu.com/api/trans/product/desktop 这是申请的接口地址,会得到一个APPID和一个钥密 然后下载PHP的对应的代码 有一个PHP文 ...
- Linux yum失败解决
Linux yum失败解决 问题: 在CentOS 5.5中需要使用yum安装程序,出现错误: There was a problem importing one of the Python modu ...
- Intent对象若干数据项的含义总结
Intent作为组件之间通信的手段和协议,包含了诸如Action.Data.Type.Category.Component.Extras和Flags等数据项,各自拥有各自的含义和作用.当调用组件发出一 ...
- Linux Valgrind命令
一.简介 C/C++程序,最常见的错误之一就是内存泄露.Valgrind 是一款 Linux下的内存调试工具,它可以对编译后的二进制程序进行内存使用监测找出内存泄漏问题. Valgrind通常包括如下 ...