#6226. 「网络流 24 题」骑士共存问题

 

题目描述

在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入。

对于给定的 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击。

输入格式

第一行有两个正整数 n\text{n}n 和 m\text{m}m (1≤n≤200,0≤m≤n2−1)( 1 \leq n \leq 200, 0 \leq m \leq n^2 - 1 )(1≤n≤200,0≤m≤n​2​​−1) 分别表示棋盘的大小和障碍数。

输出格式

输出计算出的共存骑士数。

样例

样例输入

3 2
1 1
3 3

样例输出

5

数据范围与提示

1≤n≤2001\leq n\leq 2001≤n≤200

0≤m≤n2−10 \leq m \leq n^2-10≤m≤n​2​​−1

/*
加了当前弧优化和读入优化,快了不少
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 40010
#define INF 1000000000
int n,m,head[maxn],dis[maxn],num=,S,T,cur[maxn];
bool vis[maxn],mark[maxn];
struct node{int to,pre,v;}e[maxn*];
using namespace std;
int count(int x,int y){return n*(x-)+y;}
void Insert(int from,int to,int v){
e[++num].to=to;e[num].v=v;e[num].pre=head[from];head[from]=num;
e[++num].to=from;e[num].v=;e[num].pre=head[to];head[to]=num;
}
bool bfs(){
for(int i=S;i<=T;i++)dis[i]=-,cur[i]=head[i];
queue<int>q;
q.push(S);dis[S]=;
while(!q.empty()){
int now=q.front();q.pop();
for(int i=head[now];i;i=e[i].pre){
int to=e[i].to;
if(e[i].v>&&dis[to]==-){
dis[to]=dis[now]+;
if(to==T)return ;
q.push(to);
}
}
}
return dis[T]!=-;
}
int dinic(int x,int flow){
if(x==T||flow==){return flow;}
int rest=flow;
for(int &i=cur[x];i;i=e[i].pre){
int to=e[i].to;
if(dis[to]==dis[x]+&&e[i].v>){
int delta=dinic(to,min(rest,e[i].v));
e[i].v-=delta;
e[i^].v+=delta;
rest-=delta;
}
}
return flow-=rest;
}
bool check(int x,int y){
if(x<=n&&x>=&&y<=n&&y>=&&!mark[count(x,y)])return ;
return ;
}
int qread(){
int i=,j=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')j=-;ch=getchar();}
while(ch<=''&&ch>=''){i=i*+ch-'';ch=getchar();}
return i*j;
}
int main(){
n=qread();m=qread();
S=,T=n*n+;
int x,y;
for(int i=;i<=m;i++){
x=qread();y=qread();
mark[count(x,y)]=;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(mark[count(i,j)])continue;
if((i+j)&){
Insert(S,count(i,j),);
if(check(i-,j-))Insert(count(i,j),count(i-,j-),);
if(check(i-,j+))Insert(count(i,j),count(i-,j+),);
if(check(i+,j-))Insert(count(i,j),count(i+,j-),);
if(check(i+,j+))Insert(count(i,j),count(i+,j+),);
if(check(i-,j-))Insert(count(i,j),count(i-,j-),);
if(check(i-,j+))Insert(count(i,j),count(i-,j+),);
if(check(i+,j-))Insert(count(i,j),count(i+,j-),);
if(check(i+,j+))Insert(count(i,j),count(i+,j+),);
}
else Insert(count(i,j),T,);
}
}
int ans=;
while(bfs())ans+=dinic(S,INF);
printf("%d",n*n-ans-m);
}

loj #6226. 「网络流 24 题」骑士共存问题的更多相关文章

  1. 【刷题】LOJ 6226 「网络流 24 题」骑士共存问题

    题目描述 在一个 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 \(\t ...

  2. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  3. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  4. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  5. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  6. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  7. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  8. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

  9. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. Canopy聚类算法

    Canopy聚类算法(经典,看图就明白) 聚类算法. 这个算法获得的并不是最终结果,它是为其他算法服务的,比如k-means算法.它能有效地降低k-means算法中计算点之间距离的复杂度. 图中有一个 ...

  2. 4.Django使用celery

    1. 配置celery   创建django项目celery_demo, 创建应用demo: django-admin startproject celery_demo python manage.p ...

  3. Java之IO输入输出

    首先介绍File类: 我们直接上代码: package com.learn.chap10.sec02; import java.io.File; import java.io.IOException; ...

  4. 安卓Animation类与xml制作动画

    有时要对控件添加一点动画效果,在安卓中,动画效果也是一个类,也就是Animation类.把动画效果这个类弄好后,在与控件类关联到一起,就可以实现控件有一些动作特效这样的效果了.动画效果的定义,要在xm ...

  5. 使用JAVA实现模拟登陆并发送新浪微博(非调用新浪API)

    没有调用新浪的API,在程序中加入自己的帐号和密码就能发送微博,代码完全在后台运行,不用打开浏览器. 用了HtmlUnit这个库来模拟登录还有发送微博. 先上效果图: 这个是刚登陆上获取第一页的信息. ...

  6. JavaScript之BON

    1.windows对象 全局作用域: 2.窗口关系及框架 如果页面包含框架,则每个框架都有自己的window对象,并且保存在iframes集合中,在iframe集合中,可以通过数值索引(从0开始,从左 ...

  7. 【284】◀▶ arcpy.da & arcpy 数据访问模块

    使用游标访问数据 数据访问模块 (arcpy.da) 参考: ArcGIS Python编程案例(9)-ArcPy数据访问模块 读取几何 写入几何 使用 Python 指定查询 01   da.Sea ...

  8. FPGA---ucf文件语法

    1.约束文件的概念 FPGA设计中的约束文件有3类:用户设计文件(.UCF文件).网表约束文件(.NCF文件)以及物理约束文件(.PCF文件),可以完成时序约束.管脚约束以及区域约束.3类约束文件的关 ...

  9. Awake & Start

    [Awake & Start] MonoBehaviour.Awake() Awake is used to initialize any variables or game state be ...

  10. 仿函数(二、stl中常用仿函数)

    提到C++ STL,首先被人想到的是它的三大组件:Containers, Iterators, Algorithms,即容器,迭代器和算法.容器为用户提供了常用的数据结构,算法大多是独立于容器的常用的 ...