题面

传送门

题解

我还好奇自适应辛普森法干嘛用的呢……突然想起来积分的一个用处就是求曲边图形的面积……

我们先来考虑一下这些投影是什么形状

一个圆的投影还是它自己

一个圆锥的投影是一个圆加上一个点,以及这个点和圆的两条切线(如果点在圆内部就没有这两条切线)

一个圆台的投影是两个圆加上它们的公切线

最后这个鬼畜的图形大概是长这个样子

暴力求解即可

我们可以看做这是一个鬼畜的函数,我们要求它在这一段上的积分,那么就是这个封闭图形的面积了,自适应辛普森法即可

//minamoto
#include<bits/stdc++.h>
#define R register
#define sqr(x) ((x)*(x))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int N=1005;const double eps=1e-6;
struct node{double x,y;node(){}node(R double xx,R double yy):x(xx),y(yy){}}p;
struct cir{double x,r;cir(){}cir(R double xx,R double rr):x(xx),r(rr){}}C[N];
struct line{
node s,t;double k,b;
line(){}
line(R node ss,R node tt):s(ss),t(tt){k=(t.y-s.y)/(t.x-s.x),b=t.y-t.x*k;}
inline double f(R double x){return k*x+b;}
}L[N];
int n,tot;double h[N],ll=1e9,rr,ta,alp,x,r,a,b;
void add(const R cir &s,const R cir &t){
R double si=(s.r-t.r)/(t.x-s.x),co=sqrt(1-sqr(si)),ta=si/co;
++tot;
L[tot].s=node(s.x+s.r*si,s.r*co),L[tot].t=node(t.x+t.r*si,t.r*co),
L[tot].k=-ta,L[tot].b=L[tot].t.y-L[tot].t.x*L[tot].k;
}
double F(R double x){
R double res=0;
fp(i,1,tot)(x>=L[i].s.x&&x<=L[i].t.x)?cmax(res,L[i].f(x)):0;
fp(i,1,n)(x>=C[i].x-C[i].r&&x<=C[i].x+C[i].r)?cmax(res,sqrt(sqr(C[i].r)-sqr(x-C[i].x))):0;
return res;
}
double simpson(R double l,R double r){return (F(l)+F(r)+4*F((l+r)/2))*(r-l)/6;}
double calc(double l,double r,double eps,double res){
double mid=(l+r)/2,ql=simpson(l,mid),qr=simpson(mid,r);
if(fabs(ql+qr-res)<=15*eps)return ql+qr+(ql+qr-res)/15;
return calc(l,mid,eps/2,ql)+calc(mid,r,eps/2,qr);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%lf",&n,&alp),ta=tan(alp);
fp(i,1,n+1)scanf("%lf",&h[i]),h[i]+=h[i-1];
fp(i,1,n)scanf("%lf",&C[i].r),C[i].x=h[i]/ta;
p=node(h[n+1]/ta,0),x=C[n].x,r=C[n].r;
cmax(rr,p.x),cmax(rr,x+r),cmin(ll,x-r);
if(p.x>x+r)a=sqr(r)/(p.x-x),b=sqrt(sqr(r)-sqr(a)),L[++tot]=line(node(x+a,b),p);
fd(i,n-1,1){
cmax(rr,C[i].x+C[i].r),cmin(ll,C[i].x-C[i].r);
if(C[i+1].x-C[i].x>fabs(C[i+1].r-C[i].r))add(C[i],C[i+1]);
}
printf("%.2lf\n",2*calc(ll,rr,eps,simpson(ll,rr)));
return 0;
}

洛谷P4207 [NOI2005]月下柠檬树(计算几何+自适应Simpson法)的更多相关文章

  1. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  2. 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: 562[Submit][Status] ...

  3. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

  4. [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法

    关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...

  5. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  6. 【洛谷】P4207 [NOI2005]月下柠檬树

    题解 原来自适应simpson积分是个很简单的东西! 我们尝试分析一下影子,圆的投影还是圆,圆锥的尖投影成一个点,而圆台的棱是圆的公切线,我们把圆心投影出来,发现平面上圆心的距离是两两高度差/tan( ...

  7. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  8. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  9. [NOI2005]月下柠檬树

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

随机推荐

  1. oracle 11g 导出空表

    正常情况下,oracle11g的 exp命令无法导出空表,弥补这个缺陷的方法是 在空表创建之前,更改系统设置: show parameter deferred_segment_creation 查看, ...

  2. django 基于正则表达式的url

    方式一: urls.py from mytest import views urlpatterns = [ url(r'^index-(\d+)-(\d+).html', views.Index.as ...

  3. django表单的字段验证(clean_<fieldname>())和ajax的字段验证

    django中的Form有个很重要的功能:验证用户输入 而验证用户输入也可以分为2种: (1)前端本身的验证,例如:字段是否可为空,手机号码格式是否正确等: (2)前端输入数据和后台数据库数据的验证, ...

  4. 关于微信公众号内嵌网页的几个meta标签

    最近在做微信公众平台内嵌app,其实也就是web app="=,不过就是基于微信内置浏览器(safari加了一个WeixinJS对象),稍微记一下几个html的meta标签(web app通 ...

  5. UIRect中的Anchor组件

    [UIRect中的Anchor组件] Anchor用于实现粘着功能,寄存于UIRect类中.Anchor的类型有三种: 1.None:不使用跟随功能. 2.Unified:四条边使用相同的Target ...

  6. Effective ObjectiveC 2.0 Note

    [Effective ObjectiveC 2.0 Note] 1.The memory for objects is always allocated in heap space and never ...

  7. SQL 数据排重,去掉重复数据 有用

    .最大的错误:    在对数据排重的时候,首先想到的就是Distinct,虽然这很管用,但多数场合下不适用,因为通常排重后还要做进一步处理,比如对编号排重后要按日期统计等. 无法排重的Group by ...

  8. 关闭是否只查看安全传送的网页内容提示框 和 是否允许运行软件,如ActiveX控件和插件提示框

    关闭是否只查看安全传送的网页内容提示框 最新编写 爬虫程序,运行程序后,电脑就总是出现下面这个提示框,一遍遍点"是"或"否"繁琐又麻烦.我看得有点不耐烦了.于是 ...

  9. Nginx 模块开发

    Nginx 模块概述 Nginx 模块有三种角色: 处理请求并产生输出的 Handler 模块 : 处理由  Handler  产生的输出的 Filter (滤波器)模块: 当出现多个后台 服务器时, ...

  10. npm link和react native的问题

    问题说明: 需要自己开发一个ReactNative插件,这个插件在独立git仓库,那么怎么把这个插件安装到主项目的依赖里,并且方便对插件的修改调试 方案一: 把插件发布到npm仓库,每次主项目通过np ...