Description

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。 游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。

小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

Input

​ 输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。

接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

​ 输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

Sample Input

4 3

1 1

1 2

1 3

1 5

Sample Output

0 0 1 1

HINT

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

Sol

显然,根据sg定理,这道题每一堆石子是独立的一个游戏,我们只要对每一堆分别求出其sg值,然后异或起来即可,若异或值不为0则先手必胜,若异或值为0则后手必胜。而分石子会产生若干个子游戏,也是异或起来就行了。

在求sg值的时候,如果我们枚举n个石子分成i份,那么一定是分成\(n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor+1\)的和\(i-n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor\)的。所以我们可以直接判断这两种大小的堆数,如果是奇数那么就会产生贡献,如果是偶数则不会,然后异或起来即可。但是这样的时间复杂度是\(O(n^2)\),显然超时了,考虑优化。因为\(\lfloor\frac{n}{i}\rfloor\)只有\(\sqrt{n}\)种取值,我们就可以只取到这些取值,然后再把i+1也判断一下(奇偶性会影响到模意义下的结果),这样的时间复杂度是\(O(n\sqrt{n})\),可以通过本题,代码中给出递推求sg函数的写法。

Code

#include <bits/stdc++.h>
using namespace std;
int n,ans,T,f,x,sg[100005],vis[100005];
void getsg()
{
for(int g=f;g<=100000;g++)
{
for(int i=2,last;i<=g;i=last+1)
{
int k=g/i,k2=g%i,k1=i-k2;last=g/k;
vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
if(i+1<=min(g,last)) k2=g%(i+1),k1=i+1-k2,vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
}
for(int i=0;;i++) if(vis[i]!=g){sg[g]=i;break;}
}
}
int main()
{
for(scanf("%d%d",&T,&f),getsg();T--;)
{
scanf("%d",&n);ans=0;
for(int i=1;i<=n;i++) scanf("%d",&x),ans^=sg[x];
printf("%d%c",ans?1:0,T?' ':'\n');
}
}

【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论的更多相关文章

  1. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  2. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  3. 【BZOJ3576】江南乐(博弈论)

    [BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...

  4. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  5. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  6. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  7. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  8. 【LG3235】 [HNOI2014]江南乐

    题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...

  9. bzoj 3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...

随机推荐

  1. 第十五章 MySQL日志(待续)

    ·······

  2. 预编译头文件来自编译器的早期版本,或者预编译头为 C++ 而在 C 中使用它(或相反)转

    vs2010的mfc项目中编译c语言出现错误: "...预编译头文件来自编译器的早期版本,或者预编译头为 C++ 而在 C 中使用它(或相反)" 解决方法: 建工程时 建立空项目  ...

  3. 搜索——深度优先搜索(DFS)

    设想我们现在身处一个巨大的迷宫中,我们只能自己想办法走出去,下面是一种看上去很盲目但实际上会很有效的方法. 以当前所在位置为起点,沿着一条路向前走,当碰到岔道口时,选择其中一个岔路前进.如果选择的这个 ...

  4. 解决Axis2在webservice中遇到特殊字符的无法传输的缺陷(<CDATA>数据类型)

    在使用Axis2进行soa webservice开发时,遇到类似以下的错误信息: com.ctc.wstx.sw.BaseStreamWriter.writeCharacters(BaseStream ...

  5. android 4.0.4系统下实现apk的静默安装和启动

    转 android 4.0.4系统下实现apk的静默安装和启动 分类: Android 2013-02-14 14:13 1762人阅读 评论(10) 收藏 举报 最近在android 4.0.4系统 ...

  6. Perl 变量:标量变量、数组变量、哈希变量和变量上下文

    一.Perl 变量变量是存储在内存中的数据,创建一个变量即会在内存上开辟一个空间.解释器会根据变量的类型来决定其在内存中的存储空间,因此你可以为变量分配不同的数据类型,如整型.浮点型.字符串等.上一章 ...

  7. c之指针退化和printf小陷阱

    今天参加了个笔试和面试,面试官给我指出了我试卷上的错误,我才发现,我的知识疏漏之处原来有不少,很是感谢. 记得曾经有本书,专门写c的陷阱来着,里面有很多都牵扯到指针.嘿嘿,这小家伙古灵精怪,总是喜欢误 ...

  8. BeanUtils简单应用

    <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...

  9. 怎样使用Mock Server

    转载自:http://www.cnblogs.com/111testing/p/6091460.html 怎样使用Mock Server   一,去这里https://github.com/dream ...

  10. redirect_uri域名与后台配置不一致,错误码:10003

    登录公众平台,重新配置下网页授权域名就可以了 参考https://blog.csdn.net/haoxuexiaolang/article/details/79432073