题目

没有看懂题目呢说的是什么,但是我们要求的是这个式子

\[Ans=\sum_{i=1}^n\sum_{j=1}^n\varphi(gcd^2(i,j))\]

看起来挺鬼畜的是吧

老方法枚举\(gcd\)

\[Ans=\sum_{i=1}^n\varphi(i^2)f(\left \lfloor \frac{n}{i} \right \rfloor)\]

其中

\[f(d)=\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{d} \right \rfloor}[(i,j)=1]\]

非常显然的是

\[f(d)=2\times \sum_{i=1}^d\varphi(i)\ -1\]

于是可以考虑对\(f(\left \lfloor \frac{n}{i} \right \rfloor)\)分块

所以我们需要的是\(\varphi(i^2)\)的前缀和

还有一个非常显然的东西就是

\[\varphi(i^2)=i\varphi(i)\]

考虑\(\varphi\)的公式

令\(n\)有

\[n=\prod\limits_{i=1}^{N}p_{i}^{r_{i}}\]

\[\varphi(n)=\prod\limits_{i=1}^{N}(p_i-1)p_i^{r_i-1}\]

\[\varphi(n^2)=\prod\limits_{i=1}^{N}(p_i-1)p_i^{2r_i-1}=\prod\limits_{i=1}^{N}(p_i-1)p_i^{r_i-1}p_i^{r_i}\]

\[=\prod\limits_{i=1}^{N}(p_i-1)p_i^{r_i-1}\times \prod\limits_{i=1}^{N}p_{i}^{r_{i}}=\varphi(n)\times n\]

于是设

\[F(i)=i\varphi(i)\]

于是

\[Ans=\sum_{i=1}^nf(\left \lfloor \frac{n}{i} \right \rfloor)F(i)\]

求\(F\)函数的前缀和即可

由于数据范围很大,考虑杜教筛

根据一番暴力枚举我们应该让\(F\)和\(id\)卷一下

\[(F\times id)(i)=\sum_{d|i}d\varphi(d)\frac{i}{d}\]

\[=i\sum_{d|i}\varphi(d)=i^2\]

拿出杜教筛套路

\[S(n)=\sum_{i=1}^n(F\times id)(i)-\sum_{i=2}^nid(i)S(\left \lfloor \frac{n}{i} \right \rfloor)\]

\[=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^nid(i)S(\left \lfloor \frac{n}{i} \right \rfloor)\]

不就没了吗

当然\(\left \lfloor \frac{n}{i} \right \rfloor\)也会很大,所以还要杜教筛一个欧拉函数

代码

怎么可能有

「Luogu-U18201」分析矿洞的更多相关文章

  1. 「 Luogu P1231 」 教辅的组成

    题目大意 有 $\text{N1}$ 本书 $\text{N2}$本练习册 $\text{N3}$本答案,一本书只能和一本练习册和一本答案配对.给你一些书和练习册,书和答案的可能的配对关系.问你最多可 ...

  2. 「Luogu 1525」关押罪犯

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description \(S\)城现有两座监狱,一共关押着\(N\)名罪犯,编号分别为\(1 - N\) ...

  3. 「Luogu 2367」语文成绩

    更好的阅读体验 Portal Portal1: Luogu Description 语文老师总是写错成绩,所以当她修改成绩的时候,总是累得不行.她总是要一遍遍地给某些同学增加分数,又要注意最低分是多少 ...

  4. 「Luogu 1821」[USACO07FEB]银牛派对Silver Cow Party

    更好的阅读体验 Portal Portal1: Luogu Portal2: POJ Description One cow from each of N farms \((1 \le N \le 1 ...

  5. 「Luogu 1349」广义斐波那契数列

    更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...

  6. 「Luogu 3792」由乃与大母神原型和偶像崇拜

    更好的阅读体验 Portal Portal1: Luogu Description 给你一个序列\(a\) 每次两个操作: 修改\(x\)位置的值为\(y\): 查询区间\([l, r]\)是否可以重 ...

  7. 「Luogu P5603」小O与桌游

    题目链接 戳我 \(Solution\) 我们来分析题目. 实际上就是求一个拓扑序满足拓扑序的前缀最大值最多/最少 对于第一种情况,很明显一直选当前能选的最小的是最优的对吧.因为你需要大的尽可能多.用 ...

  8. 「Luogu P3866」[TJOI2009]战争游戏 解题报告

    题面 好难表述啊~ 在n*m的矩阵上,有一些大兵(为0),一些空地(一个正整数),障碍物(-1),现在摧毁一些空地,使所有大兵不能走出矩阵去(代价为表示空地的整数),求最小代价 思路: 网络流最小割 ...

  9. 「Luogu P2201」数列编辑器 解题报告

    数列编辑器,在线IDE 本期的主题是洛谷的在线IDE 小学生?!小学生虐我

随机推荐

  1. C++的一些编程规范

    新规范的目标: 让代码排错更加简单 程序员专心于业务逻辑 将一些错误交给编译器处理 提高代码可维护性 逐步实现插件化 编码 使用array(QT下用QVarLengthArray)代替和vector代 ...

  2. [转]JQuery控制div外点击隐藏,div内点击不会隐藏

    一直弄清楚这个效果如何实现,看了这篇博客的几行代码原来如此简单,就是利用了事件冒泡而已. 比如有个div其id为body,实现在div外点击隐藏,div内点击不隐藏,采用jQuery实现如下: $(& ...

  3. 让 framset 框架中的页面全屏显示

    <script type="text/javascript"> window.onload=function(){ if(window.parent!=window){ ...

  4. Hashtable元素的删除

    2中方法 Remove(); Clear(); static void Main(string[] args) { Hashtable ht = new Hashtable(); ht.Add(1,& ...

  5. 第七章--Java基础类库--与用户的互动

    1.命令行编译和运行java程序在notepad++中集成java编译运行命令 参考博客:http://blog.sina.com.cn/s/blog_84405af50101q7fn.html2与用 ...

  6. MySQL8.0加载文件内容报错: ERROR 1148: The used command is not allowed with this MySQL version

    mysql数据库将文件内容加载到表中报错: mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet LINES TERMINAT ...

  7. ATL模板库中的OLEDB与ADO

    上次将OLEDB的所有内容基本上都说完了,从之前的示例上来看OLEDB中有许多变量的定义,什么结果集对象.session对象.命令对象,还有各种缓冲等等,总体上来说直接使用OLEDB写程序很麻烦,用很 ...

  8. Csharp and Vbscript: Encryption/Decryption Functional

      1 /// <summary>   2     /// 塗聚文   3     /// 20130621   4     /// 自定义字符串加密解密   5     /// < ...

  9. Django组件——分页器(paginator)

    一.视图层 from django.shortcuts import render # Create your views here. from .models import Book from dj ...

  10. css3总结之居中

    居中在前端布局上很常见,也很常用,也是最基本的技巧.居中效果在方向控制上基本可以分解成水平居中,垂直居中和水平垂直居中. 针对调整的元素不同,具体的处理方式上有些差异.这里我们先不讲绝对定位下的居中, ...