Catch the Theves

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65768/32768 K (Java/Others)
Total Submission(s): 1640    Accepted Submission(s): 514

Problem Description
A
group of thieves is approaching a museum in the country of zjsxzy,now
they are in city A,and the museum is in city B,where keeps many broken
legs of zjsxzy.Luckily,GW learned the conspiracy when he is watching
stars and told it to zjsxzy.
Zjsxzy decided to caught these
thieves,and he let the police to do this,the police try to catch them on
their way from A to B. Although the thieves might travel this way by
more than one group, zjsxzy's excellent police has already gather the
statistics that the cost needed on each road to guard it.
Now
,zjsxzy's conutry can be described as a N*N matrix A,Aij indicates the
city(i,j) have bidirectionals road to city(i+1,j) and city(i,j+1),gurad
anyone of them costs Aij.
Now give you the map,help zjsxzy to
calculate the minimium cost.We assume thieves may travel in any way,and
we will catch all passing thieves on a road if we guard it.
 
Input
The first line is an integer T,followed by T test cases.
In each test case,the first line contains a number N(1<N<=400).
The following N lines,each line is N numbers,the jth number of the ith line is Aij.
The city A is always located on (1,1) and the city B is always located on (n,n).
Of course,the city (i,j) at the last row or last line won't have road to (i,j+1) or (i+1,j).
 
Output
For each case,print a line with a number indicating the minimium cost to arrest all thieves.
 
Sample Input
1
3
10 5 5
6 6 20
4 7 9
 
Sample Output
18

Hint

The map is like this:

 
Source
 
 
题意:从左上角走到右下角的方案数.
题解:一看以为是最小割,但是点有1600000个,显然不现实,其实刘汝佳书里面有个类似的题,,不过没看懂方法。。然后到网上找题解,,发现构造对偶图然后求解对偶图的最短路。。好神奇
#include <iostream>
#include <cstdio>
#include <string.h>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int INF = ;
const int N = ;
const int M = N*N;
int a[N][N];
struct Edge{
int v,w,next;
}edge[*M];
int head[M];
int tot,n;
void addEdge(int u,int v,int w,int &k){
edge[k].v = v,edge[k].w = w,edge[k].next = head[u],head[u] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool vis[M];
int low[M];
int spfa(int s,int t){
for(int i=;i<=t;i++){
low[i] = INF;
vis[i] = false;
}
low[s] = ;
queue<int> q;
q.push(s);
while(!q.empty()){
int u = q.front();
// printf("%d\n",u);
q.pop();
vis[u] = false;
for(int k = head[u];k!=-;k = edge[k].next){
int v = edge[k].v,w=edge[k].w;
// printf("%d %d\n",v,w);
if(low[v]>low[u]+w){
low[v] = low[u]+w;
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
return low[t];
}
int main(){
int tcase;
scanf("%d",&tcase);
while(tcase--){
init();
scanf("%d",&n); for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
n-=;
int s = ,t = n*n+;
/**构造对偶图*/
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
int now = (i-)*n+j;
int next1 = (i-)*n+j+;
int next2 = (i-)*n+j+n;
if(j!=n) {
addEdge(now,next1,a[i][j+],tot);
addEdge(next1,now,a[i][j+],tot);
}
if(i!=n){
addEdge(now,next2,a[i+][j],tot);
addEdge(next2,now,a[i+][j],tot);
}
if(j==){
addEdge(s,now,a[i][j],tot);
addEdge(now,s,a[i][j],tot);
}
if(i==n){
addEdge(s,now,a[i+][j],tot);
addEdge(now,s,a[i+][j],tot);
}
if(i==){
addEdge(t,now,a[i][j],tot);
addEdge(now,t,a[i][j],tot);
}
if(j==n){
addEdge(t,now,a[i][j+],tot);
addEdge(now,t,a[i][j+],tot);
}
}
}
printf("%d\n",spfa(s,t));
}
return ;
}

hdu 3870(平面图最小割转最短路)的更多相关文章

  1. 【BZOJ1001】狼抓兔子(平面图最小割转最短路)

    题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路  1:(x,y)<==>(x+1,y ...

  2. HDU3870 Catch the Theves(平面图最小割转最短路)

    题目大概说给一个n×n的方格,边有权值,问从求(1,1)到(n,n)的最小割. 点达到了160000个,直接最大流不好.这题的图是平面图,求最小割可以转化成求其对偶图的最短路,来更高效地求解: 首先源 ...

  3. BZOJ1001 [BeiJing2006]狼抓兔子(平面图最小割转最短路)

    ..和HDU3870类似..注意n=1和m=1的情况. #include<cstdio> #include<cstring> #include<queue> #in ...

  4. BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路

    问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...

  5. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  6. Luogu2046 NOI2010 海拔 平面图、最小割、最短路

    传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\ ...

  7. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  8. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  9. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

随机推荐

  1. java script 学习

    用JavaScript输出文本 <p>我的第一个段落.</p> <script> document.write(Date()); </script> & ...

  2. 初学者学习python2还是python3?

    如果你是一个初学者,或者你以前接触过其他的编程语言,你可能不知道,在开始学习python的时候都会遇到一个比较让人很头疼的问题:版本问题!!是学习python2 还是学习 python3 ?这是非常让 ...

  3. linux启动和关闭防火墙命令

    在此说一下关于启动和关闭防火墙的命令:1) 重启后生效开启: chkconfig iptables on关闭: chkconfig iptables off2) 即时生效,重启后失效开启: servi ...

  4. 【bzoj4619】[Wf2016]Swap Space 贪心

    题目描述 你有许多电脑,它们的硬盘用不同的文件系统储存数据.你想要通过格式化来统一文件系统.格式化硬盘可能使它的容量发生变化.为了格式化,你需要买额外的硬盘.当然,你想要买容量最小的额外储存设备以便省 ...

  5. powershell入门教程-v0.3版

    powershell入门教程-v0.3版 来源 https://www.itsvse.com/thread-3650-1-1.html 参考 http://www.cnblogs.com/piapia ...

  6. [USACO07DEC]美食的食草动物Gourmet Grazers

    ---题面--- 题解: 首先观察题面,直觉上对于一头奶牛,肯定要给它配pi和qi符合条件的草中两者尽量低的草,以节省下好草给高要求的牛. 实际上这是对的,但观察到两者尽量低这个条件并不明确,无法用于 ...

  7. C++——继承时的this指针

    1.this指针只在类的成员函数中使用,当类的成员函数需要用到自己的指针时就要用到this指针.但静态函数不能使用this关键字,其解释是:因为this是个引用,哪个对象调用方法就引用哪个对象. 而静 ...

  8. [AHOI2005]航线规划——LCT维护边双联通分量

    因为只能支持加入一个边维护边双,所以时光倒流 维护好边双,每次就是提取出(x,y)的链,答案就是链长度-1 具体维护边双的话, void access(int x){ for(reg y=0;x;y= ...

  9. 【BZOJ 3505】 [Cqoi2014]数三角形 容斥原理+排列组合+GCD

    我们先把所有三角形用排列组合算出来,再把一行一列上的三点共线减去,然后我们只观察向右上的三点共线,向左上的乘二即可,我们发现我们如果枚举所有的两边点再乘中间点的个数(GCD),那么我们发现所有的两边点 ...

  10. bzoj 2756 [SCOI2012]奇怪的游戏 二分+网络流

    2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4926  Solved: 1362[Submit][Stat ...