hdu 3870(平面图最小割转最短路)
Catch the Theves
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 65768/32768 K (Java/Others)
Total Submission(s): 1640 Accepted Submission(s): 514
group of thieves is approaching a museum in the country of zjsxzy,now
they are in city A,and the museum is in city B,where keeps many broken
legs of zjsxzy.Luckily,GW learned the conspiracy when he is watching
stars and told it to zjsxzy.
Zjsxzy decided to caught these
thieves,and he let the police to do this,the police try to catch them on
their way from A to B. Although the thieves might travel this way by
more than one group, zjsxzy's excellent police has already gather the
statistics that the cost needed on each road to guard it.
Now
,zjsxzy's conutry can be described as a N*N matrix A,Aij indicates the
city(i,j) have bidirectionals road to city(i+1,j) and city(i,j+1),gurad
anyone of them costs Aij.
Now give you the map,help zjsxzy to
calculate the minimium cost.We assume thieves may travel in any way,and
we will catch all passing thieves on a road if we guard it.
In each test case,the first line contains a number N(1<N<=400).
The following N lines,each line is N numbers,the jth number of the ith line is Aij.
The city A is always located on (1,1) and the city B is always located on (n,n).
Of course,the city (i,j) at the last row or last line won't have road to (i,j+1) or (i+1,j).
3
10 5 5
6 6 20
4 7 9
The map is like this:
#include <iostream>
#include <cstdio>
#include <string.h>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int INF = ;
const int N = ;
const int M = N*N;
int a[N][N];
struct Edge{
int v,w,next;
}edge[*M];
int head[M];
int tot,n;
void addEdge(int u,int v,int w,int &k){
edge[k].v = v,edge[k].w = w,edge[k].next = head[u],head[u] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool vis[M];
int low[M];
int spfa(int s,int t){
for(int i=;i<=t;i++){
low[i] = INF;
vis[i] = false;
}
low[s] = ;
queue<int> q;
q.push(s);
while(!q.empty()){
int u = q.front();
// printf("%d\n",u);
q.pop();
vis[u] = false;
for(int k = head[u];k!=-;k = edge[k].next){
int v = edge[k].v,w=edge[k].w;
// printf("%d %d\n",v,w);
if(low[v]>low[u]+w){
low[v] = low[u]+w;
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
return low[t];
}
int main(){
int tcase;
scanf("%d",&tcase);
while(tcase--){
init();
scanf("%d",&n); for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
n-=;
int s = ,t = n*n+;
/**构造对偶图*/
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
int now = (i-)*n+j;
int next1 = (i-)*n+j+;
int next2 = (i-)*n+j+n;
if(j!=n) {
addEdge(now,next1,a[i][j+],tot);
addEdge(next1,now,a[i][j+],tot);
}
if(i!=n){
addEdge(now,next2,a[i+][j],tot);
addEdge(next2,now,a[i+][j],tot);
}
if(j==){
addEdge(s,now,a[i][j],tot);
addEdge(now,s,a[i][j],tot);
}
if(i==n){
addEdge(s,now,a[i+][j],tot);
addEdge(now,s,a[i+][j],tot);
}
if(i==){
addEdge(t,now,a[i][j],tot);
addEdge(now,t,a[i][j],tot);
}
if(j==n){
addEdge(t,now,a[i][j+],tot);
addEdge(now,t,a[i][j+],tot);
}
}
}
printf("%d\n",spfa(s,t));
}
return ;
}
hdu 3870(平面图最小割转最短路)的更多相关文章
- 【BZOJ1001】狼抓兔子(平面图最小割转最短路)
题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路 1:(x,y)<==>(x+1,y ...
- HDU3870 Catch the Theves(平面图最小割转最短路)
题目大概说给一个n×n的方格,边有权值,问从求(1,1)到(n,n)的最小割. 点达到了160000个,直接最大流不好.这题的图是平面图,求最小割可以转化成求其对偶图的最短路,来更高效地求解: 首先源 ...
- BZOJ1001 [BeiJing2006]狼抓兔子(平面图最小割转最短路)
..和HDU3870类似..注意n=1和m=1的情况. #include<cstdio> #include<cstring> #include<queue> #in ...
- BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- Luogu2046 NOI2010 海拔 平面图、最小割、最短路
传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\ ...
- BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
- bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)
bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...
随机推荐
- 软工实践Beta冲刺(2/7)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...
- lintcode-109-数字三角形
109-数字三角形 给定一个数字三角形,找到从顶部到底部的最小路径和.每一步可以移动到下面一行的相邻数字上. 注意事项 如果你只用额外空间复杂度O(n)的条件下完成可以获得加分,其中n是数字三角形的总 ...
- 【loj6177】「美团 CodeM 初赛 Round B」送外卖2 Floyd+状压dp
题目描述 一张$n$个点$m$条边的有向图,通过每条边需要消耗时间,初始为$0$时刻,可以在某个点停留.有$q$个任务,每个任务要求在$l_i$或以后时刻到$s_i$接受任务,并在$r_i$或以前时刻 ...
- Python数据分析(四)DataFrame, Series, ndarray, list, dict, tuple的相互转换
转自:https://blog.csdn.net/lambsnow/article/details/78517340 import numpy as np import pandas as pd ## ...
- P3444 [POI2006]ORK-Ploughing
题目描述 Byteasar, the farmer, wants to plough his rectangular field. He can begin with ploughing a slic ...
- [Leetcode] Remove duplicates from sorted list 从已排序的链表中删除重复元素
Given a sorted linked list, delete all duplicates such that each element appear only once. For examp ...
- BZOJ3242 [Noi2013]快餐店 【环套树 + 单调队列dp】
题目链接 BZOJ3242 题解 题意很清楚,找一点使得最远点最近 如果是一棵树,就是直径中点 现在套上了一个环,我们把环单独拿出来 先求出环上每个点外向树直径更新答案,并同时求出环上每个点外向的最远 ...
- 【BZOJ 1407】[Noi2002]Savage ExGCD
我bitset+二分未遂后就来用ExGCD了,然而这道题的时间复杂度还真是玄学...... 我们枚举m然后对每一对用ExGCD判解,我们只要满足在最小的一方死亡之前无解就可以了,对于怎么用,就是ax+ ...
- 在Eclipse上使用egit插件通过ssh协议方式上传项目代码的具体步骤
在Eclipse上使用egit插件通过ssh协议方式上传项目代码 前戏: 使用ssh方式可以不通过https协议,避免直接提供账号密码的方式上传项目到git在线服务器,如Bitbucket.GitHu ...
- centos 安装mysql 笔记
1.查询已安装软件的目录 rpm -ql mysql 2.mysql的安装卸载 a. 查找已安装的myslq 版本: #rpm -qa | grep mysql (注意大小写,如果mysql 不行 ...