LOJ2542. 「PKUWC2018」随机游走

https://loj.ac/problem/2542

分析:

  • 为了学习最值反演而做的这道题~
    • \(max{S}=\sum\limits_{T\subseteq S}(-1)^{|T|-1}min{T}\)

      考虑排序后的\(a\)序列。
  • \(\sum\limits_{T\subseteq S}(-1)^{|T|-1}min{T}=\sum\limits_{i=1}^na_i\sum\limits_{j=0}^{n-i}(-1)^j\binom{n-i}{j}\)
  • \(\sum\limits_{T\subseteq S}(-1)^{|T|-1}min{T}=\sum\limits_{i=1}^na_i[n-i=0]\)
  • \(\sum\limits_{T\subseteq S}(-1)^{|T|-1}min{T}=a_n=max{S}\)
  • 设\(f_{s,i}\)表示\(f\)第一次走到\(s\)状态的期望步数。
  • 这个东西我们直接枚举\(s\)然后树上高斯消元即可。
  • 最后再\(fwt\)一下就能得到反演后的\(min_s\)了。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
#define mod 998244353
typedef long long ll;
#define N 20
#define M ((1<<18)+50)
int n,head[N],to[N<<1],nxt[N<<1],du[N],rt,m;
int S,Cnt[M],cnt;
inline void add(int u,int v) {to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;}
ll K[N],B[N],inv[N],f[M];
ll qp(ll x,ll y) {
ll re=1;
for(;y;y>>=1,x=x*x%mod)if(y&1)re=re*x%mod;return re;
}
void dfs(int x,int y) {
int i;
if(S&(1<<(x-1))) {K[x]=B[x]=0; return ;}
K[x]=inv[du[x]]; B[x]=1; ll lhs=1;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y) {
dfs(to[i],x);
lhs=(lhs-K[to[i]]*inv[du[x]])%mod;
B[x]=(B[x]+B[to[i]]*inv[du[x]])%mod;
}
lhs=qp(lhs,mod-2);
K[x]=K[x]*lhs%mod; B[x]=B[x]*lhs%mod;
}
void fwt(ll *a,int len) {
int i,j,k,t;
for(k=2;k<=len;k<<=1) for(t=k>>1,i=0;i<len;i+=k) for(j=i;j<i+t;j++) a[j+t]=(a[j+t]+a[j])%mod;
}
int main() {
scanf("%d%d%d",&n,&m,&rt);
int i,x,y;
for(i=1;i<n;i++) {
scanf("%d%d",&x,&y); add(x,y); add(y,x); du[x]++; du[y]++;
}
for(i=1;i<=n;i++) inv[i]=qp(i,mod-2);
int mask=(1<<n)-1;
for(i=0;i<=mask;i++) {
S=i;
dfs(rt,0);
Cnt[i]=Cnt[i>>1]+(i&1);
f[i]=B[rt];
if(!(Cnt[i]&1)) f[i]=-f[i];
}
fwt(f,(1<<n));
while(m--) {
int k,s=0;
scanf("%d",&k);
while(k--) {
scanf("%d",&x); s|=(1<<(x-1));
}
printf("%lld\n",(f[s]+mod)%mod);
}
}

LOJ2542. 「PKUWC2018」随机游走的更多相关文章

  1. loj2542「PKUWC2018」随机游走

    题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...

  2. loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】

    题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...

  3. LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】

    题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...

  4. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  7. 【LOJ2542】「PKUWC2018」随机游走

    题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  8. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  9. 「PKUWC2018」随机游走

    题目 我暴力过啦 看到这样的东西我们先搬出来\(min-max\)容斥 我们设\(max(S)\)表示\(x\)到达点集\(S\)的期望最晚时间,也就是我们要求的答案了 显然我们也很难求出这个东西,但 ...

随机推荐

  1. UI控件之UIPickerView的协议方法

    UIPickerView:选择视图,父类是UIView UIPickerView *pickerView=[[UIPickerView alloc]initWithFrame:CGRectMake(1 ...

  2. kafka connect简介以及部署

    https://blog.csdn.net/u011687037/article/details/57411790 1.什么是kafka connect? 根据官方介绍,Kafka Connect是一 ...

  3. 每天一个Linux命令(48)ping命令

        ping命令用来测试主机之间网络的连通性.     (1)用法:     用法:  ping [参数] [主机名或IP地址]     (2)功能:     功能:  确定网络和各外部主机的状态 ...

  4. 每天一个Linux命令(38)top命令

     top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.       (1)用法:       用法:  top  [参数] top是 ...

  5. 用PyDev、eclipse搭建Python开发环境

    一 Eclipse for python环境搭建 ①下载原生Eclipse,可以直接百度Eclipse,在百度软件中心下载  ②下载完后,打开软件,选择第一个安装即可  ③安装完成后,打开eclips ...

  6. Centos6.5安装php5.6.7

    1. 下载 官网:http://php.net/downloads.php wget http://cn2.php.net/get/php-5.6.7.tar.gz/from/this/mirror ...

  7. space sniffer清理的空间

    部分超级大的单文件,比如数据库 C:\inetpub\logs\LogFiles\W3SVC4 C:\Users\clu\AppData\Local\JetBrains\Transient C:\Us ...

  8. 集成Spring web.xml配置总结

    1.web.xml 的加载顺序是:ServletContext -> context-param -> listener -> filter -> servlet 1.serv ...

  9. 关于CKEDITOR的一些小问题

    <textarea  name="tMessage" ></textarea> <script type="text/javascript& ...

  10. Hadoop的Docker镜像构建

    1.Dockerfile ###Dockerfile -- beagin FROM ubuntu:trusty #MAINTAINER The Hue Team "https://githu ...