51nod 1060 最复杂的数
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100)
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)
共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。
5
1
10
100
1000
10000
1 1
6 4
60 12
840 32
7560 64
——————————————————————————
这道题就是求不大于n的反素数 反素数有个性质就是质数的次数
质因数越小出现的次数越大 也就是不增
这样之后找18个质数(乘起来超过1e18) 然后这样剪枝就可以过了
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const LL inf=1LL<<;
LL read(){
LL ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int num[]={,,,,,,,,,,,,,,,,,};
LL T,n,ans,mx;
void dfs(LL now,LL sum,int step,int last){
if(now>mx) mx=now,ans=sum;
if(now==mx&&ans>sum) ans=sum;
for(int i=;i<=last;i++){
if(inf/num[step]<sum||sum*num[step]>n) break;
sum=sum*num[step];
dfs(now*(i+),sum,step+,i);
}
}
int main(){
T=read();
while(T--){
ans=; mx=;
n=read();
dfs(,,,);
printf("%lld %lld\n",ans,mx);
}
return ;
}
51nod 1060 最复杂的数的更多相关文章
- 51nod 1060 最复杂的数 反素数
1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...
- 51nod 1060 最复杂的数(数论,反素数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060 题解:可以去学习一下反素数. #include < ...
- 1060 最复杂的数(反素数玄学dfs)
1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...
- 51nod 1061 最复杂的数V2
题目链接 51nod 1061 题面简述 求\([1, n]\)中约数个数最多的数. \(n \le 10^{200}\) 题解 首先,答案一定是一个反素数. 什么是反素数? 一个正整数\(x\)是反 ...
- 基于visual Studio2013解决C语言竞赛题之1060寻找回文数
题目 解决代码及点评 /* 60. 回文数指左右数字对称的数,如121,2112都是回文数.回文数猜想:取一任意十进制数,将其倒过来,并将这两个数相加, 然后把这个相加的和倒过来再与 ...
- 51Nod 1084:矩阵取数问题 V2(多维DP)
1084 矩阵取数问题 V2 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...
- 51nod 1479 小Y的数论题
一脸不可做题~~~233333 T<=100000,所以一定要logn出解啦. 但是完全没有头绪*&#……%*&……()……#¥*#@ 题解: 因为2^p+2^p=2^(p+1) ...
- 51nod 1060反素数
经典题. #include<map> #include<queue> #include<stack> #include<cmath> #include& ...
- 51nod 1060
反素数定义:对于任意正整数 $n$, 其约数个数记为 $f(n)$, 如果某个正整数 $n$ 满足 对于任意正整数 $i, (0 < i < n)$, 都有 $f(i) < f(n) ...
随机推荐
- L008之前课程实战模拟。
L008之前课程实战模拟. . 安装CentOS 6.5 X86_64 . 配置网络 . 用CRT连接服务器 . 更换源http://mirrors.163.com/.help/CentOS6-Bas ...
- 【目录】Spring 源码学习
[目录]Spring 源码学习 jwfy 关注 2018.01.31 19:57* 字数 896 阅读 152评论 0喜欢 9 用来记录自己学习spring源码的一些心得和体会以及相关功能的实现原理, ...
- iOS开发中常见的一些异常
iOS开发中常见的异常包括以下几种NSInvalidArgumentExceptionNSRangeExceptionNSGenericExceptionNSInternallnconsistency ...
- 【C#】 语法糖
[C#] 语法糖 一, 扩展方法 1. 对某个类功能上的扩展 2. 特点: 使用方便,可以在不修改原代码的基础上进行扩展. 参照 linq,linq 就是一系列的扩展方法 3. 语法: 非泛型静态类, ...
- python学习总结------邮件与短信
邮件发送 - 简介: - 邮件服务器.用户名.密码 - 相关协议: - SMTP:简单邮件传输协议 - POP3:邮局通讯协议 - IMAP:交互式邮件存取协议 - SMTP协议默认端口是25 - 用 ...
- python 网络编程(socketserver,阻塞,其他方法)
重点回顾: (重点)粘包 : 就是因为接收端不知道如何接收数据,造成接收数据的混乱的问题 只发生在tcp协议上. 因为tcp协议的特点是面向数据流形式的传输 粘包的发生主要是因为tcp协议有两个机制: ...
- (原创)像极了爱情的详解排序二叉树,一秒get
排序二叉树(建立.查找.删除) 二叉树我们已经非常熟悉了,但是除了寻常的储存数据.遍历结构,我们还能用二叉树做什么呢? 我们都知道不同的遍历方式会对相同的树中产生不同的序列结果,排序二叉树就是利用二叉 ...
- LeetCode 215——数组中的第 K 个最大元素
1. 题目 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 ...
- Spring Boot(一)入门篇
SpringBoot概述 Spring Boot的诞生简化了Spring应用开发,SpringBoot提供对Spring容器.第三方插件等很多服务的管理.对于大部分Spring应用,无论是简单的web ...
- elasticsearch this is not a http port
访问的是elastic search的tcp端口,需换成http端口. elastic search默认tcp端口9300,http端口9200 如果浏览器中访问http://localhost:92 ...