51nod 1060 最复杂的数
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100)
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)
共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。
5
1
10
100
1000
10000
1 1
6 4
60 12
840 32
7560 64
——————————————————————————
这道题就是求不大于n的反素数 反素数有个性质就是质数的次数
质因数越小出现的次数越大 也就是不增
这样之后找18个质数(乘起来超过1e18) 然后这样剪枝就可以过了
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const LL inf=1LL<<;
LL read(){
LL ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int num[]={,,,,,,,,,,,,,,,,,};
LL T,n,ans,mx;
void dfs(LL now,LL sum,int step,int last){
if(now>mx) mx=now,ans=sum;
if(now==mx&&ans>sum) ans=sum;
for(int i=;i<=last;i++){
if(inf/num[step]<sum||sum*num[step]>n) break;
sum=sum*num[step];
dfs(now*(i+),sum,step+,i);
}
}
int main(){
T=read();
while(T--){
ans=; mx=;
n=read();
dfs(,,,);
printf("%lld %lld\n",ans,mx);
}
return ;
}
51nod 1060 最复杂的数的更多相关文章
- 51nod 1060 最复杂的数 反素数
1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...
- 51nod 1060 最复杂的数(数论,反素数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060 题解:可以去学习一下反素数. #include < ...
- 1060 最复杂的数(反素数玄学dfs)
1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...
- 51nod 1061 最复杂的数V2
题目链接 51nod 1061 题面简述 求\([1, n]\)中约数个数最多的数. \(n \le 10^{200}\) 题解 首先,答案一定是一个反素数. 什么是反素数? 一个正整数\(x\)是反 ...
- 基于visual Studio2013解决C语言竞赛题之1060寻找回文数
题目 解决代码及点评 /* 60. 回文数指左右数字对称的数,如121,2112都是回文数.回文数猜想:取一任意十进制数,将其倒过来,并将这两个数相加, 然后把这个相加的和倒过来再与 ...
- 51Nod 1084:矩阵取数问题 V2(多维DP)
1084 矩阵取数问题 V2 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...
- 51nod 1479 小Y的数论题
一脸不可做题~~~233333 T<=100000,所以一定要logn出解啦. 但是完全没有头绪*&#……%*&……()……#¥*#@ 题解: 因为2^p+2^p=2^(p+1) ...
- 51nod 1060反素数
经典题. #include<map> #include<queue> #include<stack> #include<cmath> #include& ...
- 51nod 1060
反素数定义:对于任意正整数 $n$, 其约数个数记为 $f(n)$, 如果某个正整数 $n$ 满足 对于任意正整数 $i, (0 < i < n)$, 都有 $f(i) < f(n) ...
随机推荐
- 配置ORACLE的PRO*C环境
1.访问数据库的方法 在ORACLE数据库管理和系统中,有三种访问数据库的方法: ⑴.用SQL*Plus, 它有SQL命令以交互的应用程序访问数据库: ⑵.用第四代语言应用开发工具开 ...
- 三张照片解决--win10系统的edge浏览器设置为浏览器IE8,IE7,IE9---完美解决 费元星
主要思想: 第二种方法: 参考文档: 1.可以在系统盘的C:\Program Files\Internet Explorer中找到iexplore.exe,然后将其发送到桌 ...
- 30分钟玩转css3动画, transition,animation
其实css3动画是就是2种实现,一种是transition,另一种就是animation.transition实现的话就是只能定制开始帧,和结束2帧:而animation实现的话可以写很多关键帧.没有 ...
- springmvc基础篇—修改默认的配置文件名称及位置
springmvc的默认配置文件是放在WEB-INF下的,叫action-servlet.xml.根据咱们编程的习惯,一般都将配置文件放到src的根目录下,那么如何将这个文件迁移过来呢?其实很简单,请 ...
- APPium-python实例(记录)
https://github.com/appium/sample-code/tree/master/sample-code/examples/python
- Java进阶知识点1:白捡的扩展性 - 枚举值也是对象
一.背景 枚举经常被大家用来储存一组有限个数的候选常量.比如下面定义了一组常见数据库类型: public enum DatabaseType { MYSQL, ORACLE, SQLSERVER } ...
- python之*args和**kwargs参数,以及迭代器
*args让函数可以接受不限制多个位置参数,**kwargs让函数可以接受不限制多个关键字参数,用法如图 2.迭代器总结
- 第5讲——cin处理字符输入
本来这一讲应该是while.for.if之类的,但是,我们可是学过C的男人,再浪费时间搞这个??? 还不如学点C++中的新知识. cin对象支持3种不同模式的单字符输入,其用户接口各不相同. 下面我们 ...
- week12第二轮迭代任务分配forZ.XML
Z.XML第二轮迭代任务初步分配新鲜出炉,请关注! 以上便是任务分配列表,队员们会按照进度每天更改任务进度 当然,根据敏捷开发的方法,我们将在开发过程中根据情况迅速调整任务分配,以适应当时问题. Z- ...
- LTE QOS
http://wenku.baidu.com/link?url=ziFIkdKaC7MU2RY-bTOp2bt87WFPw5_02bqmYs5W6w4ktOfPHEcWesK1U2T7YiyXjVSM ...