【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去……
原题意思是求以下式子:
$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\sum\limits_{i=1}^{b}[gcd(i,j)==p]$
首先把p拿下来,得到
$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a/p}\sum\limits_{i=1}^{b/p}[gcd(i,j)==1]$
然后就跟1101一样了,我就复制下。
然后考虑mobius函数的性质:
$\sum\limits_{d|n}\mu(d)=1(n==1),0(n>1)$
所以可以把那个gcd的式子替换下,得到:
$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a/p}\sum\limits_{i=1}^{b/p}\sum\limits_{d|gcd(i,j)}\mu(i)$
我们稍微改写一下这个式子:
$Ans=\sum\limits_{isprime(p)}\sum\limits_{d=1}^{min(a/p,b/p)}\mu(i)\frac{a}{pd}\frac{b}{pd}$
但是此时我们为了减少素数的枚举,可以把pd提取出来:
$\sum\limits_{pd=1}^{n}\sum\limits_{isprime(p),p|pd}\mu(d)\frac{a}{pd}\frac{b}{pd}$
由于这题数据比较水,根据调和级数枚举下质数就能多一个log水过去了……
然后就是下底函数分块。
//题目:bzoj2820 YY的GCD
#include<bits/stdc++.h>
#define N 10000005
#define ll long long
using namespace std;
int mu[N],vis[N],prime[N],cnt;
long long f[N];
void calcmu(){
cnt=;mu[]=;
memset(vis,true,sizeof(vis));
for(int i=;i<N;i++){
if(vis[i])prime[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt;j++){
int t=prime[j]*i;
if(t>N)break;
vis[t]=false;
if(i%prime[j]==){mu[t]=;break;}
mu[t]-=mu[i];
}
}
for(int i=;i<=cnt;i++){
int p=prime[i];
for(int j=;j*p<=N;j++)f[j*p]+=mu[j];
}
for(int i=;i<=N;i++)f[i]+=f[i-];
}
int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return x*f;
}
int main(){
calcmu();int j;int n,m;
int T=read();
while(T--){
ll ans=;n=read();m=read();
if(n>m)swap(n,m);
for(int i=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(f[j]-f[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
【反演复习计划】【bzoj2820】YY的GCD的更多相关文章
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 【反演复习计划】【51nod1594】Gcd and Phi
现在感觉反演好多都是套路QAQ…… #include<bits/stdc++.h> using namespace std; ; typedef long long ll; int n,c ...
- 【反演复习计划】【bzoj2818】gcd
就是之前的2820的升级版. 把暴力枚举素数改成预处理就随便A了. #include<bits/stdc++.h> #define N 10000005 #define ll long l ...
随机推荐
- Bellman_ford标准算法
Bellman_ford求最短路可以说这个算法在某些地方和dijkstra还是有些相似的,它们的松弛操作基本还是一样的只不过dijkstra以图中每个点为松弛点对其相连接的所有边进行松弛操作 而Bel ...
- 小心!FOMO3D的坑
null 01 前方高能 近日,区块链机构安比(SECBIT)实验室审计后确认,FOMO3D游戏的智能合约存在随机数漏洞可被利用,FOMO3D合约及所有抄袭源码的山寨合约均存在该安全漏洞. 原本设计上 ...
- Linux 简单socket实现TCP通信
服务器端代码 #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <stri ...
- winform label去背景
以pictureBox上面显示一个不需要背景的label为例: 1.保证label的父控件是该pictureBox: 2.label的color属性为transParent:
- Spring Boot学习(一):入门篇
目录 Spring Boot简介 Spring Boot快速搭建 1 新建项目 2 运行项目 3 设置spring boot可以热部署(修改后端代码后,自动部署,不用手动部署) 3.1:配置pom.x ...
- 传统IT七大职业的云计算转型之路
毫无疑问,对于那些传统IT技术--企业架构师.系统管理者.测试验收工程师或者网络工程师等开发人员骑身到云计算行业不仅是大势所趋,也能为其带来工作的保证,薪酬也更加丰厚. 如今,企业上云已经成为不可阻挡 ...
- elasticsearch this is not a http port
访问的是elastic search的tcp端口,需换成http端口. elastic search默认tcp端口9300,http端口9200 如果浏览器中访问http://localhost:92 ...
- 段寻址*****************************TBD
fffff880`01b05be1 ff9708020000 call qword ptr [rdi+208h] ds:002b:fffff980`0554ae88=fffffa8004b ...
- angular强制刷新
有时候请求完毕,某些变量重新赋值后不会体现在页面上,此时需要强制刷新 $scope.$apply(function () { $scope.message ="Timeout called! ...
- log4net将日志写入ElasticSearch
log4net将日志写入ElasticSearch https://www.cnblogs.com/huangxincheng/p/9120028.html 很多小步快跑的公司,开发人员多则3-4个, ...