最短路径问题 3.Bellman-Ford算法
简要:Bellman-Ford算法计算的仍然是从一个点到其他所有点的最短路径算法,其时间复杂度是O(NE),N表示点数,E表示边数,不难看出,当一个图稍微稠密一点,边的数量会超过点数那么实际上效率是低于Dijkstra算法的。但是本算法可以计算存在负权边的情况(不存在负回路),因此可以用于更广泛的情况,但其实在日常解题应用中我们基本不会用到该算法,因为有一个比它效率更高的算法即SPFA算法,下一章会介绍到。SPFA算法其实是从Bellman-Ford算法演变而来的,那么从基础的开始,我们先来理解一下Bellman-Ford算法。
算法描述:s为起点,dis[v]为s到v的最短距离,pre[v]是v的前驱结点,w[j]是边 j 的长度,j 边的起点和终点分别是u,v。
1、初始化:dis[s]=0, dis[v]=∞(v≠s), pre[s]=0
2、for(i=1;i<=n-1;i++)
for(j=1;j<=e;j++)
if(dis[u]+w[j]<dis[v]){
dis[v]=dis[u]+w[j];
pre[v]=u;
}
算法理解:一开始已标记的点只有起点,每一次枚举所有的边,总会有一些边连接着已标记的点和未标记的点,即已经计算过最短距离和为计算过最短距离的点。因此每次枚举都会更新一些未标记的点成为已标记的点。而n-1次则保证了最坏情况下所有的点均可以被标记,即图的样子是一“串”的情况。
对于负权回路的情况,因为每一次枚举都会走过一圈负权回路,那么恰好在该回路两边的点之间的最短距离就会无限减小,因此会造成错误。对此,大家给出了一个不是解决方法的解决方法,就是如果在两重循环结束后,再次枚举每条边,如果再次出现某两点的距离减少,那么就返回"错误",已表示有负权回路,无法算出答案。
当然,对于负权回路也有解决方法,在介绍完SPFA算法后会补充一下。
代码如下:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int n,e,s;
struct node{
int x;
int y;
int val;
}m[];
int dis[],pre[],a,b,w[][];
int bellmanford(int s){
int i,j; for(i=;i<=n;i++)
dis[i]=w[s][i];
dis[s]=;pre[s]=;
for(i=;i<=n-;i++)
for(j=;j<=e;j++)
if(dis[m[j].x]+m[j].val<dis[m[j].y])
{
dis[m[j].y]=dis[m[j].x]+m[j].val;
pre[m[j].y]=m[j].x;
}
for(j=;j<=e;j++){
if(dis[m[j].x]+m[j].val<dis[m[j].y]) return ;
}
return dis[]; }
int main(){
int i,j;
scanf("%d%d",&n,&e);
memset(dis,,sizeof(dis));
memset(w,,sizeof(w));
for(i=;i<=e;i++){
scanf("%d%d%d",&m[i].x,&m[i].y,&m[i].val);
a=m[i].x;
b=m[i].y;
w[a][b]=m[i].val;
}
for(i=;i<=;i++)
for(j=;j<=;j++)
printf("%d ",w[i][j]);
scanf("%d",&s);
printf("%d",bellmanford(s));
return ;
}
最短路径问题 3.Bellman-Ford算法的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- 图论之最短路径(2)——Bellman-Ford算法
继续最短路径!说说Bellman—Ford算法 思路:假设起点为s,图中有n个顶点和m个边,那么它到任一点(比如i)的最短路径 最多可以有n-1条(没有回路就是n-1条):因为最短路径中不可能包含回路 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径—Dijkstra算法和Floyd算法【转】
本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...
随机推荐
- (二)selenium元素定位
selenium定位方法 Selenium提供了8种定位方式. id name class name tag name link text partial link text xpath css se ...
- TP5.0:引入view视图中公共的模版文件
1.实例:如后台admin模块,公用一个header.html和footer.hml 2.目录结构: 3.视图页面的使用方式: <!--添加header页面数据-->{include fi ...
- Dll注入:修改PE文件 IAT注入
PE原理就不阐述了, 这个注入是PE感染的一种,通过添加一个新节注入,会改变PE文件的大小,将原有的导入表复制到新节中,并添加自己的导入表描述符,最后将数据目录项中指向的导入表的入口指向新节. 步骤: ...
- Bokeh 学习
这段时间由于在做K-means对文本进行处理,需要进行绘图,实验室编程大哥向我介绍了Bokeh来进行绘图,一直是根据自己的需求来进行对其探索,今儿个看到一篇博文,对Bokeh进行了详细的解说,做个笔记 ...
- 【luogu P3371 单源最短路径】 模板 SPFA
题目链接:https://www.luogu.org/problemnew/show/P3371 我永远都喜欢Flyod.dijkstra + heap.SPFA #include <cstdi ...
- JavaScript面向对象编程之创建对象
参考资料依旧<JavaScript高级程序设计>,不得不说这本书写的太好了,讲的极为清晰凝练,好书! 先给出重点笔记,好好理解下面的三条笔记,每一句话都很重要: 1.实例的指针仅指向原型, ...
- 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)
洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...
- Failed to resolve: com.android.support:appcompat-v7:23.*
打开 sdk manager ,安装 android support repository.
- sudoers文件解析 转自:http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=1971013
今天在用户组中新加了一个普通用户,开始这个用户没有sudo权限,于是通过sudo visudo修改了sudo的配置文件,赋予了普通用户的root权限.后来想着能不能将/etc/sudoers文件的访问 ...
- js箭头函数
ES6标准新增了一种新的函数:Arrow Function(箭头函数). 为什么叫Arrow Function?因为它的定义用的就是一个箭头 x =>x*x 相当于: function(x) { ...