【BZOJ1812】[Ioi2005]riv 树形DP
【BZOJ1812】[Ioi2005]riv
Description
Input
Output
Sample Input
1 0 1
1 1 10
10 2 5
1 2 3
Sample Output
题解:憋了一上午想出来的树形DP题~
如何设状态呢?显然n=100,应该是3维的状态,并且有一维是x,有一维是x的子树中建了多少个伐木场,最后一维呢?用y表示x最近的建了伐木场的祖先!
状态都设完了就做完了~用f[x][y][z]表示x子树中建y个伐木场,并且x的木料运到x的z级祖先的最小花费。那么对于y这一维相当于树形背包。对于z这一维,它的儿子运到的位置一定不会比x的z级祖先更远,那么就用f[x][y][z]和f[x'][y'][z'](x'是x的儿子,z'<=z+1)来更新f'[x][y+y'][z]即可。
网上的代码怎么都是左儿子右兄弟啊~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
int n,m,cnt;
ll ans;
int to[110],next[110],head[110],fa[110][110],sf[110],siz[110],w[110],v[110],dep[110];
ll f[110][110][110],g[110][110];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
int i,j,k,l,y;
fa[x][0]=x,siz[x]=1;
for(i=0;i<=sf[x];i++) y=fa[x][i],f[x][i][!i]=(dep[x]-dep[y])*w[x];
for(i=head[x];i!=-1;i=next[i])
{
y=to[i],dep[y]=dep[x]+v[y];
for(j=0;j<=sf[x];j++) fa[y][++sf[y]]=fa[x][j];
dfs(y);
memset(g,0x3f,sizeof(g));
for(j=0;j<=sf[x];j++) for(k=min(m,siz[x]);k>=0;k--) for(l=min(m-k,siz[y]);l>=0;l--)
g[j][k+l]=min(g[j][k+l],f[x][j][k]+min(f[y][j+1][l],f[y][0][l]));
siz[x]+=siz[y];
for(j=0;j<=sf[x];j++) for(k=0;k<=min(m,siz[x]);k++) f[x][j][k]=g[j][k];
}
}
int main()
{
n=rd(),m=rd()+1;
memset(head,-1,sizeof(head));
int i;
for(i=1;i<=n;i++) w[i]=rd(),add(rd(),i),v[i]=rd();
memset(f,0x3f,sizeof(f));
dfs(0);
printf("%lld",f[0][0][m]);
return 0;
}
【BZOJ1812】[Ioi2005]riv 树形DP的更多相关文章
- BZOJ1812: [Ioi2005]riv(树形dp)
题意 题目链接 Sol 首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值.但是直接这样然后按照树形背包的套路转移 ...
- BZOJ 1812: [Ioi2005]riv( 树形dp )
树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...
- BZOJ_1812_[Ioi2005]riv_树形DP
BZOJ_1812_[Ioi2005]riv_树形DP Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了 ...
- bzoj1812 [Ioi2005]riv
riv 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫B ...
- bzoj1812 [IOI2005]riv河流
题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个 ...
- [bzoj1812][IOI2006]riv_多叉树转二叉树_树形dp
riv bzoj-1812 IOI-2006 题目大意:给定一棵n个点树,要求在上面建立k个收集站.点有点权,边有边权,整棵树的代价是每个点的点权乘以它和它的最近的祖先收集站的距离积的和. 注释:$1 ...
- rivers ioi2005 树形dp
说句实话,写完这道题,很想吐一口血出来,以示我心情的糟糕: 题目很简单,树形dp,正常做30分钟,硬是做了好几个小时,真是伤心. 题解不写了,只是吐个槽,网上没有用背包写的dp,全是左儿子右兄弟写法, ...
- 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP
题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...
- 1812: [Ioi2005]riv
1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][D ...
随机推荐
- Windows内核之线程简单介绍
1 线程定义 <1> 内核对象,操作系统用它来对线程实施管理.内核对象也是系统用来存放线程统计信息的地方 <2>还有一个是线程堆栈.它用于维护线程在运行代码时须要的全部函数參数 ...
- 乌云主站所有漏洞综合分析&乌云主站漏洞统计
作者:RedFree 最近的工作需要将乌云历史上比较有含金量的漏洞分析出来,顺便对其它的数据进行了下分析:统计往往能说明问题及分析事物的发展规律,所以就有了此文.(漏洞数据抓取自乌云主站,漏洞编号从1 ...
- CSDN 夏令营程序 试题分析 (3)
首先大家先来看题目: 分析: 三维数组存储以行为主序列,计算公式例如以下: Loc(Ai,j,k)=Loc(Ac1c2c3)+[(i-c1)V2V3+(j-c2)V3+(k-c3)]*L 当中c1.c ...
- git 基于某个分支创建分支
1.拷贝源代码 git clone git@git地址 cd 项目目录 2.根据已有分支创建新的分支 git checkout -b yourbranchname origin/oldbranchna ...
- 【DB2】NOT IN使用中的大坑
1.环境准备 ------建表TB DROP TABLE TB; CREATE TABLE TB ( ID INTEGER, LEVEL_DETAIL ) ); INSERT INTO TB (ID, ...
- 网站相关技术探究keepalive_timeout(转)
网站相关技术探究keepalive设多少: /proc/$PID/fd/$number 0:标准输入 1:标准输出 2:标准错误 Test: [root@KTQT ~]# ll /proc/12 ...
- Zabbix触发器函数(取前后差值)
获取最新值last zabbix触发器方法last用于获取item最新值或者第几个值以及某个时间的哪一个值. Last (most recent) T value is > N Last (mo ...
- iBatis 使用总结
http://blog.csdn.net/caihaijiang/article/details/6438633 --日期格式化 date_format(createtime,'%Y-%m-%d') ...
- Git使用笔记2
工作必备: [更新master] git checkout master git pull git checkout zyb/FirstCommit git merge master //git re ...
- SpringCloud系列十:使用Feign实现声明式REST调用
1. 回顾 前文的示例中是使用RestTemplate实现REST API调用的,代码大致如下: @GetMapping("/user/{id}") public User fin ...