AGC018D Tree and Hamilton Path(树+树的重心)
题目大意:
给你一棵n个结点树,然后根据这棵树构造一个完全图,求完全图的一条最长的哈密顿路径。
构造方式是,完全图中的dis(u, v)就等于树上的u和v的距离。
题解:
这。。。这。。不就是杜教的那个题
还是弱化版的orz
需要注意的是,不是完全一样,这个题求的是哈密顿回路,需要删除一个最小的路径
答案就很简单了,找到重心以后。
如果有一棵子树大小为(n+1)/2,那么就只能删除连向那个子树的边
如果没有,那么就遍历一遍所有连向重心的边,选一个最小的删除即可。
杜教题连接 http://www.cnblogs.com/Saurus/p/7077966.html
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#define fi first
#define se second
using namespace std;
const int maxn = 1e5 + ;
typedef long long LL;
typedef pair<int, long long> PLI;
typedef pair<int, int> PII;
vector<PLI> G[maxn];
set<PII> S;
int son[maxn], sz[maxn];
int tree[maxn*];
int n, tot;
LL ANS = , Min = 1e18;
void dfs0(int x, int fa){
sz[x] = ;
for(auto e : G[x]){
if(e.fi == fa) continue;
dfs0(e.fi, x);
sz[x] += sz[e.fi];
son[x] = max(son[x], sz[e.fi]);
}
son[x] = max(son[x], n - sz[x]);
} void dfs(int x, int fa, LL v){
sz[x] = ;
for(auto e : G[x]){
if(e.fi == fa) continue;
dfs(e.fi, x, e.se+v);
sz[x] += sz[e.fi];
}
ANS += v;
} int main()
{
cin>>n;
for(int i = ; i < n; i++){
int x, y, w;
cin>>x>>y>>w;
G[x].push_back({y, w});
G[y].push_back({x, w});
}
int X;
dfs0(, );
for(int i = ; i <= n; i++) if(son[i] <= n/) X = i;
dfs(X, X, );
for(auto e : G[X]){
if(sz[e.fi] == (n+)/) { Min = e.se; break; }
Min = min(e.se, Min);
}
cout<<ANS* - Min<<endl;
}
AGC018D Tree and Hamilton Path(树+树的重心)的更多相关文章
- AtCoder Grand Contest 018 D - Tree and Hamilton Path
题目传送门:https://agc018.contest.atcoder.jp/tasks/agc018_d 题目大意: 给定一棵\(N\)个点的带权树,求最长哈密顿路径(不重不漏经过每个点一次,两点 ...
- D - Tree and Hamilton Path
题意 给一棵树,问一个排列,使得按顺序走过这些点的路径最长. N<=100000 解法 为了能让每条边被经过的次数达到上界, 我们首先找出重心, 然后容易得出一种排列方案,使得答案为以重心为根的 ...
- Merkle Tree(默克尔树)算法解析
Merkle Tree概念 Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节点 ...
- 转 Merkle Tree(默克尔树)算法解析
Merkle Tree概念 Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节 ...
- 区块链~Merkle Tree(默克尔树)算法解析~转载
转载~Merkle Tree(默克尔树)算法解析 /*最近在看Ethereum,其中一个重要的概念是Merkle Tree,以前从来没有听说过,所以查了些资料,学习了Merkle Tree的知识,因为 ...
- Linux下的tree命令 --Linux下目录树查看
Linux下的tree命令 --Linux下目录树查看 有时我们需要生成目录树结构,可以使用的有ls -R,但是实际效果并不好 这时需要用到tree命令,但是大部分Linux系统是默认不安装该命令的, ...
- ACM学习历程——POJ3321 Apple Tree(搜索,线段树)
Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will ...
- 【整理】iview Tree数据格式问题,无限递归树处理数据
iview Tree数据格式问题,无限递归树处理数据 https://juejin.im/post/5b51a8a4e51d455d6825be20
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
随机推荐
- HTML5—— 你肯定会用到的新知识
HTML5 简介 语义化标签 新增结构标签 表单 多媒体 HTML5 简介 XML是更加严格的语言 是HTML和XHTML的结合 语义化标签 新增的语义化标签 header nav section a ...
- Asp.Net Core 生成图形验证码
前几天有朋友问我怎么生成图片验证码,话不多说直接上代码. 支持.NET CORE开源.助力.NET Core社区发展. using System; using System.IO; using Sys ...
- 吐血分享:QQ群霸屏技术教程2017(维护篇)
排名上去,并不是终极稳定,日常维护相当重要. 群排名做上去了,如果不去维护,排名很可能会下去,尤其是咱们做了很多群的时候,完全不会留意到. 为什么不稳定? 1.活跃度下去了,排名当然不稳定,这个需要日 ...
- PHP命令行(CLI模式)
CLI模式 CLI模式其实就是命令行运行模式,英文全称Command-Line Interface(命令行接口) $ php -h Usage: php [options] [-f] <file ...
- JavaSE 第二次学习随笔(三)
* 常见异常 * 数组越界异常 * 空指针异常 * * * 特点: 当程序出现异常的时候, 程序会打印异常信息并中断程序 * 所以当同时出现多个异常的时候只能执行第一个, 后边的用不到 * * 单异常 ...
- STM32(4)——系统时钟和SysTick
1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI.HSE.LSI.LSE.PLL HSI是高速内部时钟,RC振荡器,频率为8MHz: HSE是高速外部时钟,可接石英/陶瓷谐振器 ...
- socket编程基础1——hostent、in_addr、gethostbyname、inet_ntoa
1. struct hostent结构体 struct hostent { char *h_name; char **h_aliases; int h_addrtype; int h_length; ...
- Android面试收集录 网络与加密
1.创建Socket对象需要至少指定哪些信息? IP(或域名)和端口号 Socket socket=new Socket("www.baidu.com",80); 2.如何使用So ...
- WPF中使用第三方字体选择器
原文:WPF中使用第三方字体选择器 起因 到WPF的字体可以设置的东西变得非常的多,而却没有提供专用的字体选择对话框,甚至于WinFrom的FontDialog也是不能直接用来设置WPF中的字体.解决 ...
- POJ 1568 Find the Winning Move
Find the Winning Move 链接 题意: 4*4的棋盘,给出一个初始局面,问先手有没有必胜策略? 有的话输出第一步下在哪里,如果有多个,按(0, 0), (0, 1), (0, 2), ...