的确,如果不知道这个编码的话的确是一脸懵逼。在这里放一篇认为讲的很详细的 BLOG,有关于编码的方式 & 扩展在里面都有所提及。

  欢迎点此进入 --> 大佬的博客

  在这里主要想推导一下最后面的扩展公式是怎么来的。问题:给定一棵树 & 树上各个节点的度数,求有多少棵满足要求的生成树?

  在了解了Prüfer编码之后,我们已经知道编码与生成树是一一对应的关系了,且一个数在Prüfer编号上面出现的次数即为它的度数 - 1;问题转化成为:一个长度为 \(n - 2\) 的序列中均为范围在 \(1\) ~ \(n\)的数字,规定了每个数字出现的次数,问有多少个合法的序列?首先不考虑是否合法,规定排列当中的数字各不相同,这样的排列有 \(\left ( n - 2 \right )!\) 种。但这样明显统计多了,因为当有相同的数字出现时,交换它们之间的相对位置并不会改变排列的实质。于是我们要在此基础之上除以每一种相同数字的排列数 : \(\prod \left ( d[i] - 1 \right )!\)。

  所以最后的式子是: \(\frac{\left ( n - 2 \right )!}{\prod \left ( d[i] - 1  \right )! }\)

  HNOI2004树的计数就是一道和和上面这个问题一模一样的题,实际上HNOI2008明明的烦恼也是同一道题(实在是不忍吐槽)。不过后者要写高精,我懒……

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define int long long
int n, d[maxn], cal[maxn];
int sum, ans = , a[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} signed main()
{
n = read(); cal[] = ;
for(int i = ; i <= n; i ++) cal[i] = cal[i - ] * i;
for(int i = ; i <= n; i ++)
{
d[i] = read(); if(d[i])
sum += d[i] - ;
if(d[i] == && n != ) { printf("0\n"); return ; }
a[i] = cal[d[i] - ];
}
if(sum != n - ) { printf("0\n"); return ; }
sort(a + , a + + n);
int j = ;
while(a[j] == && j < n) j ++;
for(int i = ; i <= n - ; i ++)
{
ans *= i;
while(j <= n && !(ans % a[j])) ans /= a[j], j ++;
}
printf("%lld\n", ans);
return ;
}

【算法】Prüfer编码 —— HNOI2004树的计数的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  2. P2290 [HNOI2004]树的计数(bzoj1211)

    洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...

  3. BZOJ1211: [HNOI2004]树的计数

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1245  Solved: 383[Submit][Statu ...

  4. BZOJ 1211: [HNOI2004]树的计数( 组合数学 )

    知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...

  5. 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一 ...

  6. bzoj 1211: [HNOI2004]树的计数 -- purfer序列

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...

  7. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

  8. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

  9. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

随机推荐

  1. 百度知道芝麻将,申请资格&权限介绍&奖惩制度(简剖)

    芝麻将,即百度知道管理员.不及掌握,了解下也是好的. 知道圈子,把注册用户,成为芝麻.一般用户,即小芝麻.芝麻将,就是咱们说的知道管理员. 申请. 芝麻将,申请条件不是很难,难的是后续维护,申请前考虑 ...

  2. ECSHOP和SHOPEX快递单号查询国际EMS插件V8.6专版

    发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...

  3. 【Leetcode】804. Unique Morse Code Words

    Unique Morse Code Words Description International Morse Code defines a standard encoding where each ...

  4. java入门---windows和Linux,UNIX,Solaris,FreeBSD下开发环境配置

        首先来看Windows下的操作.我们需要下载java开发工具包JDK.下载地址:http://www.oracle.com/technetwork/java/javase/downloads/ ...

  5. shell重温---基础篇(连接数据库)

    前几天分享了shell字符串操作,数组操作等,接下来回归到项目,进行数据库操作.按照一般情况来说,shell连接数据库基本上都是DB使用的,因为需要运行大量的sql啊什么的,所以都会封装到shell中 ...

  6. P1078 文化之旅

    P1078 文化之旅 题目描述 有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一 种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家).不 同的国家 ...

  7. android开发过程中项目中遇到的坑----布点问题

    我们在红点push 的到达和点击的地方,都加了布点.后来功能上了线,发现,每天的点击都比到达高! 这肯定不科学. 赶紧查问题,打开程序,发红点,关闭程序,布点上传.没问题.数据部门可以收到红点啊! 从 ...

  8. Andrid 打印调用堆栈

    public static void printCallStatck() { Throwable ex = new Throwable(); StackTraceElement[] stackElem ...

  9. web前端/移动端H5博客专家博客大全--值得收藏的前端技术大牛博客地址

    web前端/移动端H5博客专家博客大全--值得收藏的前端技术大牛博客地址   Huang Jie Blog .Com-前端开发 http://www.huangjieblog.com/?feed=rs ...

  10. 【C#】 语法糖

    [C#] 语法糖 一, 扩展方法 1. 对某个类功能上的扩展 2. 特点: 使用方便,可以在不修改原代码的基础上进行扩展. 参照 linq,linq 就是一系列的扩展方法 3. 语法: 非泛型静态类, ...