[洛谷P3195][HNOI2008]玩具装箱TOY
题目大意:有n个物体,大小为$c_i$。把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$。费用最小.
题解:
$$令:a_i=\sum\limits_{i=1}^{i} c_i$$
$$dp_i=min(dp_j+(a_i+i-a_j-j-L-1)^2)$$
$$(以下称两点斜率为 slope(A,B) )$$
$$令:b_j=a_i+i,d_i=b_i+i+L+1$$
$$\therefore dp_i=dp_j+(b_i-d_j)^2$$
$$展开得:2a_i \cdot b_j+dp_i-a_i^2=dp_j+b_j^2$$
$$令:x_i=2b_i,y_i=dp_i+2b_i^2$$
斜率优化
卡点:无
C++ Code:
#include<cstdio>
using namespace std;
long long c[50010],f[50010],n,l;
int q[50010],h,t,tmp;
long long pw(long long i){return i*i;}
long long getb(int i){return c[i]+i;}
long long getd(int i){return getb(i)-l-1;}
long long getx(int i){return getb(i)*2;}
long long gety(int i){return f[i]+pw(getb(i));}
double slope(int a,int b){
return double(gety(a)-gety(b))/double(getx(a)-getx(b));
}
int main(){
scanf("%lld%lld",&n,&l);
for (int i=1;i<=n;i++)scanf("%lld",&c[i]),c[i]+=c[i-1];
for (int i=1;i<=n;i++){
while (h<t&&slope(q[h],q[h+1])<=getd(i))h++;
tmp=q[h];
f[i]=f[tmp]+pw(getd(i)-getb(tmp));
while (h<t&&slope(q[t-1],q[t])>=slope(q[t],i))t--;
q[++t]=i;
}
printf("%lld\n",f[n]);
return 0;
}
[洛谷P3195][HNOI2008]玩具装箱TOY的更多相关文章
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- 洛谷 P3195 [HNOI2008]玩具装箱TOY
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- 洛谷 P3195 [HNOI2008] 玩具装箱
链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...
- 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...
- 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
随机推荐
- 【mysql学习笔记整理】
/*mysql学习笔记整理*/ /*常用的数据库操作对象*/ #库的操作#创建#数据库的创建USE mysql;CREATE DATABASE db_x;#删除#删除数据库DROP DATABASE ...
- Array-快餐管饱
一.如何获得一个数组? rsp: 1. [] 2.new Array() 3.str.split() ps:new Array()可以不加括号,其传一个参数代表数组长度,两个及以上就是初始化数组. ...
- MySQL5.7版本安装
安装方式一: ZIP压缩包安装 >>>首先,到MYSQL官网下载.zip格式的MySQL Server的压缩包,根据需要选择x86或x64版. >>>下载需要登录o ...
- C#正则表达式Regex类的使用
C#中为正则表达式的使用提供了非常强大的功能,这就是Regex类.这个包包含于System.Text.RegularExpressions命名空间下面,而这个命名空间所在DLL基本上在所有的项目模板中 ...
- ExceL按记录导出Txt 工具
根据客户要求,开发此工具,每一条记录改出一个Txt文本,文本名取其中一字段数据
- 爬虫之requests模块基础
一.request模块介绍 1. 什么是request模块 - python中原生的基于网络请求的模块,模拟浏览器发起请求. 2. 为什么使用request模块 - urllib需要手动处理url编码 ...
- 怎么修复网站漏洞 骑士cms的漏洞修复方案
骑士CMS是国内公司开发的一套开源人才网站系统,使用PHP语言开发以及mysql数据库的架构,2019年1月份被某安全组织检测出漏洞,目前最新版本4.2存在高危网站漏洞,通杀SQL注入漏洞,利用该网站 ...
- 数列分块入门 1 LOJ6277
题目描述 给出一个长为 n 的数列,以及 n 个操作,操作涉及区间加法,单点查值. 输入格式 第一行输入一个数字 n. 第二行输入 n 个数字,第 iii 个数字为 ai,以空格隔开. 接下来输 ...
- [KAFKA]kafka常用操作
-- kafka路径示例 /opt/cloudera/parcels/KAFKA/bin-- kafka启动./kafka-server-start.sh -daemon ../config/serv ...
- 2457: [BeiJing2011]双端队列
2457: [BeiJing2011]双端队列 链接 很奇妙的转化. 题目要求最后的所有序列也是有序的,所以可以求出最后的序列(即排序后的序列),然后分成许多份,要求每一份都是一个双端序列,求最少分成 ...