题目描述

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包括3×3个交叉路口和12条双向道路。
小Z作为该市的市长,他根据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最小值。

输入

第一行包含一个整数n,含义如上文所示。接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

输出

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结果四舍五入到整数。

样例输入

1
1
2
3
4
5
6
7
8

样例输出

3


题解

最小割转对偶图最短路

首先肯定有:1个点的高度只可能是0或1,且所有“0”、所有“1”都是相连的。即只有两片区域,左上为“0”区域,右下为“1”区域。

那么题目就转化为一个最小割模型。

但是点数太多,直接求最大流会TLE,于是转化为对偶图求解。

具体同 bzoj1001

然而这题是有向图,需要考虑方向。

考虑到朝右下的边是s->t方向,而朝左上的边是t->s方向。

所以求对偶图的边时,也需要使用相同的方向,即朝右下的边是s'->t'方向,朝左上的边是t'->s'方向,如下图所示。

然后跑堆优化Dijkstra即可。

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <utility>
  4. #include <queue>
  5. using namespace std;
  6. priority_queue<pair<int , int> > q;
  7. int head[250010] , to[1003000] , len[1003000] , next[1003000] , cnt , dis[250010] , vis[250010] , n , num[510][510];
  8. void add(int x , int y , int z)
  9. {
  10. to[++cnt] = y;
  11. len[cnt] = z;
  12. next[cnt] = head[x];
  13. head[x] = cnt;
  14. }
  15. int main()
  16. {
  17. int i , j , x , s , t;
  18. scanf("%d" , &n);
  19. s = 0 , t = n * n + 1;
  20. for(i = 1 ; i <= n ; i ++ )
  21. num[0][i] = num[i][n + 1] = s , num[i][0] = num[n + 1][i] = t;
  22. for(i = 1 ; i <= n ; i ++ )
  23. for(j = 1 ; j <= n ; j ++ )
  24. num[i][j] = n * (i - 1) + j;
  25. for(i = 0 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j] , num[i + 1][j] , x);
  26. for(i = 1 ; i <= n ; i ++ ) for(j = 0 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j + 1] , num[i][j] , x);
  27. for(i = 0 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i + 1][j] , num[i][j] , x);
  28. for(i = 1 ; i <= n ; i ++ ) for(j = 0 ; j <= n ; j ++ ) scanf("%d" , &x) , add(num[i][j] , num[i][j + 1] , x);
  29. memset(dis , 0x3f , sizeof(dis));
  30. dis[s] = 0;
  31. q.push(make_pair(0 , s));
  32. while(!q.empty())
  33. {
  34. x = q.top().second , q.pop();
  35. if(vis[x]) continue;
  36. vis[x] = 1;
  37. for(i = head[x] ; i ; i = next[i])
  38. if(dis[to[i]] > dis[x] + len[i])
  39. dis[to[i]] = dis[x] + len[i] , q.push(make_pair(-dis[to[i]] , to[i]));
  40. }
  41. printf("%d\n" , dis[t]);
  42. return 0;
  43. }

【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路的更多相关文章

  1. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  2. [NOI2010]海拔——最小割+对偶图

    题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...

  3. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  4. 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2095  Solved: 1002[Submit][Status] ...

  5. BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割

    题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...

  6. [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  7. [NOI2010]海拔(最小割)

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...

  8. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  9. 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

随机推荐

  1. Mysql读写分离,主从同步实现

    随着用户量的增多,数据库操作往往会成为一个系统的瓶颈所在,因此我们可以通过实现数据库的读写分离来提高系统的性能. 通过设置主从数据库实现读写分离,主库负责“写”操作,从库负责“读”操作,根据压力情况, ...

  2. 简易的vuex用法

    vuex是vue中用于管理全局状态的一个组件,用于不同组件之间的通信,下面将介绍它的简单用法 首先安装vue与vuex npm install vue npm install vuex --save ...

  3. php post提交xml文件

    <?php header("Content-type: text/xml;"); // xml code demo $xmlData = '<?xml version= ...

  4. Python协程中使用上下文

    在Python 3.7中,asyncio 协程加入了对上下文的支持.使用上下文就可以在一些场景下隐式地传递变量,比如数据库连接session等,而不需要在所有方法调用显示地传递这些变量.使用得当的话, ...

  5. 初步学习pg_control文件之七

    接前文 初步学习pg_control文件之六  看   pg_control_version 以PostgreSQL9.1.1为了,其HISTORY文件中有如下的内容: Release Release ...

  6. windows 系统禁止使用 U 盘的方法

    windows 系统禁止使用 U 盘的方法 最简单的办法: 注册表 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentCntrolSet\Services\USBSTOR] 将名为 ...

  7. java基础 -- Collections.sort的两种用法

    /** * @author * @version * 类说明 */ package com.jabberchina.test; import java.util.ArrayList; import j ...

  8. MySQL数据库服务器逐渐变慢分析与解决

    一.检查系统的状态 通过操作系统的一些工具检查系统的状态,比如CPU.内存.交换.磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲,这也可能不是一个正常的状态,因为cpu可 ...

  9. Office Web Apps Server(1)

         Office Web Apps Server runs on one or more servers and provides browser-based Office file viewi ...

  10. Java日志(二):log4j与XML配置文件

    [Java日志(一):log4j与.properties配置文件]一文列举的几个案例以.properties文件作为log4j的配置文件,本文简单看一下log4j与XML配置文件 (1)XML配置文件 ...