题解 P3950 【部落冲突】
树链剖分吼啊
一看就看出是LCT模板题啦
前记
见这么多人写LCT,却很少人写树链剖分,于是我就来一发树链剖分(其实是因为自己不会LCT)
本蒟蒻的写法和诸位写树链剖分的大神有点不同
思路
树链剖分,简单题
操作
操作1:'C' 操作 : 简单的说就是把x到y的边cut掉,题目又保证x,y相邻,肯定直接LCT啦,那么我们就可以将x,y的所以边权加1,表示那些边多了一次战争。
操作2:'U' 操作 : 简单的说就是把之前cut的边加回来,我们只需要记录之前每一次战争的两个部落编号,战争结束就把那两个部落直接的边权减去1就可以了,表示那些边少了一次战争。
操作3:'Q' 操作 : 简单的说就是询问x,y之间的边权和,如果是0,表示经过的边一次战争也没有,就是yes;不然就有战争,是no。
这么一看,思路是不是很简单。
但还有些问题,树链剖分是针对点权的,我们如何转换为边权呢?
点权转边权
方法有很多,例如在每一条边都多加1个点,在加的那个点上记录权值。
但是,这里讲一下我的做法:直接忽略!
在一颗树内,点有n个,边有n-1条,所以我们可以让每一条边对应到点上,对应方式就是边的编号是边上两点深度小的点编号。
那么就只会有根是没有边对应的所以我们可以假设有一条编号为根的边和根相连。
将x,y的边权加就等于将x,y的点权全部加,然后LCA(x,y)的点权减回去(可以自己画图尝试一下)
查询x,y的边权和就等于将x,y的点权全部累加,然后减去LCA(x,y)的点权(可以自己画图尝试一下)
于是我们整个思路就出来了(这样就不用改线段树啦>w< )
代码
#include<bits/stdc++.h>
#define maxn 4000001
#define L(x) (x<<1)
#define R(x) ((x<<1)|1)
using namespace std;
int tree[maxn],tag[maxn];
int rev[maxn],dep[maxn],size[maxn],seg[maxn],top[maxn],son[maxn],father[maxn];
int n,m,root,x,y,z,a[maxn],visx[maxn],visy[maxn],tot;
int cnt,from[maxn],to[maxn],Next[maxn],head[maxn];
char mode;
void add(int x,int y){
cnt++;
from[cnt]=x;to[cnt]=y;
Next[cnt]=head[x];head[x]=cnt;
}
//线段树
void pushdown(int node,int begin,int end){
if(tag[node]){
tag[L(node)]+=tag[node];
tag[R(node)]+=tag[node];
int mid=(begin+end)>>1;
tree[L(node)]+=(mid-begin+1)*tag[node];
tree[R(node)]+=(end-mid)*tag[node];
tag[node]=0;
}
}
void update(int node,int begin,int end,int x,int y,int val){
if(begin>y||end<x)return;
if(begin>=x&&end<=y){
tag[node]+=val;
tree[node]+=(end-begin+1)*val;
return;
}else{
pushdown(node,begin,end);
int mid=(begin+end)>>1;
if(x<=mid)update(L(node),begin,mid,x,y,val);
if(y>mid) update(R(node),mid+1,end,x,y,val);
tree[node]=tree[L(node)]+tree[R(node)];
}
}
int query(int node,int begin,int end,int x,int y){
if(begin>y||end<x)return 0;
if(begin>=x&&end<=y){
return tree[node];
}else{
pushdown(node,begin,end);
int mid=(begin+end)>>1,sum=0;
if(x<=mid)sum+=query(L(node),begin,mid,x,y);
if(y>mid) sum+=query(R(node),mid+1,end,x,y);
return sum;
}
}
//线段树
int dfs1(int x){ //树链剖分模板
size[x]=1;
dep[x]=dep[father[x]]+1;
for(int i=head[x];i!=-1;i=Next[i]){
int v=to[i],big=0;
if(father[x]==v)continue;
father[v]=x;
big=dfs1(v);
size[x]+=big;
if(big>size[son[x]])son[x]=v;
}
return size[x];
}
void dfs2(int x){ //树链剖分模板
if(son[x]){
seg[son[x]]=++seg[0];
top[son[x]]=top[x];
rev[seg[0]]=son[x];
dfs2(son[x]);
}
for(int i=head[x];i!=-1;i=Next[i]){
int v=to[i];
if(!top[v]){
seg[v]=++seg[0];
top[v]=v;
rev[seg[0]]=v;
dfs2(v);
}
}
}
void linkadd(int x,int y,int z){
int fx=top[x],fy=top[y];
while(fx!=fy){
if(dep[fx]<dep[fy])swap(x,y),swap(fx,fy);
update(1,1,seg[0],seg[fx],seg[x],z);
x=father[fx];fx=top[x];
}
if(dep[x]>dep[y])swap(x,y);
update(1,1,seg[0],seg[x],seg[y],z);
update(1,1,seg[0],seg[x],seg[x],-z); //LCA特殊处理
}
int linkquery(int x,int y){
int fx=top[x],fy=top[y],ans=0;
while(fx!=fy){
if(dep[fx]<dep[fy])swap(x,y),swap(fx,fy);
ans+=query(1,1,seg[0],seg[fx],seg[x]);
x=father[fx];fx=top[x];
}
if(dep[x]>dep[y])swap(x,y);
ans+=query(1,1,seg[0],seg[x],seg[y]);
ans-=query(1,1,seg[0],seg[x],seg[x]); //减LCA
return ans;
}
int main(){
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);root=1;
for(int i=1;i<=n-1;i++){
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs1(root);
seg[root]=++seg[0];
rev[seg[0]]=root;
top[root]=root;
dfs2(root);
for(int i=1;i<=m;i++){
scanf("%s",&mode);
if(mode=='C'){
scanf("%d%d",&x,&y);
visx[++tot]=x;visy[tot]=y; //记录每一次战争的两个部落
linkadd(x,y,1); //x到y的边权加1
}
if(mode=='U'){
scanf("%d",&x);
linkadd(visx[x],visy[x],-1); //战争结束就减回去
}
if(mode=='Q'){
scanf("%d%d",&x,&y);
int q=linkquery(x,y); //查询x到y的边权和
if(q==0)printf("Yes\n");else //如果q为0就可以
printf("No\n"); //不行就……
}
}
}
另外推荐题目
题解 P3950 【部落冲突】的更多相关文章
- luogu题解 P3950部落冲突--树链剖分
题目链接 https://www.luogu.org/problemnew/show/P3950 分析 大佬都用LCT,我太弱只会树链剖分 一个很裸的维护边权树链剖分题.按照套路,对于一条边\(< ...
- lupgu P3950 部落冲突
题目链接 luogu P3950 部落冲突 题解 树剖线段树可以 lct还行 代码 #include<cstdio> #include<algorithm> inline in ...
- 洛谷 P3950 部落冲突 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例1 输出样例1 输入样例2 输出样例2 输入样例3 输出样例3 说明 思路 AC代码 总结 题面 题目链接 P3 ...
- 洛谷P3950 部落冲突 [LCT]
题目传送门 部落冲突 格式难调,体面就不放了. 分析: julao们应该都看得出来就是个$LCT$板子,战争就$cut$,结束就$link$,询问就$find$.没了... 太久没打$LCT$,然后发 ...
- 【luogu P3950 部落冲突】 题解
题目连接:https://www.luogu.org/problemnew/show/P3950 1.像我这种学数据结构学傻了的 2.边权化点权 所有点权初始化0 3.对于战争 将深度较深的-1,对于 ...
- 【题解】Luogu P3950 部落冲突
原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 我们用Link-Cut-Tree维护连通性(十分无脑) 一开始先把树中每条边的两端连接 U操作:把u,v两个点连起来 ...
- [题解] 洛谷P3950 部落冲突
传送门 拿到题目,一看 裸LCT (其实是我懒得打,splay又臭又长) 首先,这道题的意思就是删掉一些边 所以常规操作 点权转边权 之后对于战争操作,在对应的边上+1 对于和平操作,在对应的边上-1 ...
- 【刷题】洛谷 P3950 部落冲突
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- P3950 部落冲突
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- 洛谷P3950 部落冲突(LCT)
洛谷题目传送门 最无脑LCT题解,Dalao们的各种算法都比这个好多啦... 唯一的好处就是只管码代码就好了 开战cut,停战link,询问findroot判连通性 太无脑,应该不用打注释了.常数大就 ...
随机推荐
- 【C语言】赋值运算中的类型转换
#include<stdio.h> int main() { int a, b; double x = 1.54; char ch; a = x; x = ; b = 'a'; ch = ...
- python、js实现WGS84、高德(火星)、百度坐标转换
在日常工作学习中常会涉及到WGS84.高德(火星/谷歌).百度三种空间坐标系的坐标转换,本文将通过python.js两种语言实现坐标系的转换. 坐标系说明: wgs84:为一种大地坐标系,也是目前广泛 ...
- rapidxml编写xml文件(一)
int writeXML(void) { rapidxml::xml_document<> doc; rapidxml::xml_node<> *rot = doc.alloc ...
- Springboot中使用kafka
注:kafka消息队列默认采用配置消息主题进行消费,一个topic中的消息只能被同一个组(groupId)的消费者中的一个消费者消费. 1.在pom.xml依赖下新添加一下kafka依赖ar包 < ...
- 「JSOI2013」哈利波特和死亡圣器
「JSOI2013」哈利波特和死亡圣器 传送门 首先二分,这没什么好说的. 然后就成了一个恒成立问题,就是说我们需要满足最坏情况下的需求. 那么显然在最坏情况下伏地魔是不会走回头路的 因为这显然是白给 ...
- 解决IDEA快捷键 Alt+Insert 失效的问题
现象 IDEA快捷键 Alt+Inser 失效,单击右键也不出现[Generate]. 这个问题经常出现在重新安装IDEA后. 原因 缺少2个插件 解决办法 在setting中启用这2个插件即可.这2 ...
- java.sql.SQLException: The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time.....
SpringBoot 2.1.4启动时报错 java.sql.SQLException: The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecogniz ...
- 【转】shell处理mysql增删改查
这几天做一个任务,比对两个数据表中的数据,昨天用PHP写了一个版本,但考虑到有的机器没有php或者php没有编译mysql扩展,就无法使用mysql系列的函数,脚本就无效了,今天写个shell版本的, ...
- 利用 Jenkins 持续集成 iOS 项目,搭建自动化打包环境
---恢复内容开始--- jenkins是一个广泛用于持续构建的可视化web工具,持续构建即各种项目的”自动化”编译.打包.分发部署.jenkins可以很好的支持各种语言(比如:Java, c#, P ...
- request库解析中文
官网地址: http://cn.python-requests.org/zh_CN/latest/ 高级用法 本篇文档涵盖了 Requests 的一些高级特性. 会话对象 会话对象让你能够跨请求保持某 ...