题目

【内存限制:256 MiB】【时间限制:1000 ms】
【标准输入输出】【题目类型:传统】【评测方式:文本比较】

题目描述

脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种关系刚好组成一个 $n$ 层的完全二叉树。公民 $i$ 的下属是 $2i$ 和 $2i +1$。最下层的公民即叶子节点的公民是平民,平民没有下属,最上层的是国王,中间是各级贵族。

现在这个王国爆发了战争,国王需要决定每一个平民是去种地以供应粮食还是参加战争,每一个贵族(包括国王自己)是去管理后勤还是领兵打仗。一个平民会对他的所有直系上司有贡献度,若一个平民 $i$ 参加战争,他的某个直系上司 $j$ 领兵打仗,那么这个平民对上司的作战贡献度为 $w_{ij}$。若一个平民 $i$ 种地,他的某个直系上司 $j$ 管理后勤,那么这个平民对上司的后勤贡献度为 $f_{ij}$,若 $i$ 和 $j$ 所参加的事务不同,则没有贡献度。为了战争需要保障后勤,国王还要求不多于 $m$ 个平民参加战争。

国王想要使整个王国所有贵族得到的贡献度最大,并把这件事交给了脸哥。但不幸的是,脸哥还有很多 deadline 没有完成,他只能把这件事又转交给你。你能帮他安排吗?

输入格式

第一行两个数 $n,m$。

接下来 $2^{n-1}$ 行,每行 $n-1$ 个数,第 $i$ 行表示编号为 $2^{n-1}-1+ i$ 的平民对其 $n-1$ 个直系上司的作战贡献度,其中第一个数表示对第一级直系上司,即编号为 $\frac{2^{n-1}-1+ i}{2}$ 的贵族的作战贡献度 $w_{ij}$,依次往上。

接下来 $2^{n-1}$ 行,每行 $n-1$ 个数,第 $i$ 行表示编号为 $2^{n-1}-1+ i$ 的平民对其 $n-1$ 个直系上司的后勤贡献度,其中第一个数表示对第一级直系上司,即编号为 $\frac{2^{n-1}-1+ i}{2}$ 的贵族的后勤贡献度 $f_{ij}$ ,依次往上。

输出格式

一行一个数表示满足条件的最大贡献值。

样例

样例输入

3 4
503 1082
1271 369
303 1135
749 1289
100 54
837 826
947 699
216 389

样例输出

6701

数据范围与提示

对于 $100 \%$ 的数据,$2 \leq n \leq 10, \ m \leq 2^{n-1}, \ 0 \leq w_{ij}, f_{ij} \leq 2000$

题解

做题经历

做到这道题,已经丧心病狂了。

在扎实的语文功底下 $(90/150 pts)$ ,我只用了 $5 min$ 看懂题目.

然后就开始暴搜......

暴搜思路就是,啥都不管,用 $O(2^{2^N})$ 来枚举一个人到底是去打仗还是后勤,然后计算此时的价值,最后输出最大价值即可。

暴搜思路人人懂,算算时间明年到。

时间复杂度大概$O(2^{2^N})$,你以为这样就完了?不,还有个计算的常数 $2^N$,所以完整复杂度 $O(2^{2^N}×2^N)$真是一个友好的算法


正解

基于暴搜,我们可以有一些思考

先不考虑 $m$ 的限制。

在这样一棵树里面,平民 $8、9$ 的价值只和他们的所有祖先,也就是 $1、2、4$ 有关

再往上,$4、5$ 的价值只和 $1、2$ 有关

而暴搜复杂度高在何处?

我们做了很多无效的枚举。比如我们要算 $8、9$ 的价值,但是我们却枚举了 $3、5、6、7......$的状态,而这单独对于 $8、9$ 来说,是无效的枚举。

而 $8、9$ 只与他们的祖先有关。

那么我们为什么不考虑一个状态,存下节点编号,以及其祖先状态。

那么一个十分粗糙的状态就出来了:

$dp[s][u]$:节点 $u$ 的祖先状态为 $s$ (二进制串的状压) 时其子树的最大价值。

而这时我们又要考虑 $m$ 对于此题的限制,再加一维:

$dp[s][u][j]$:节点 $u$ 的祖先状态为 $s$ (二进制串的状压) 时,其子树中选了 $j$ 个人去打仗时,这棵子树的最大价值。

那么状转就是:

$dp[s][u][j]=dp[s'][v_1][x]+dp[s'][v_2][y],x+y=j$

这个状转很简单,现在我们来算一下时间复杂度:

首先,对于一个深度为 $k$ 的点

  • 其祖先有 $k-1$ 个,那么串 $s$ 有 $2^{k-1}$
  • 对于它自己,有两种取值:$1|0$(打仗或者后勤)
  • 枚举 $x$ 与 $y$ ,复杂度为$2^{n-k-1}$,有两棵子树,复杂度为${(2^{n-k-1})}^2$

把他们乘起来,时间复杂度$O(2^{k-1}×2×{(2^{n-k-1})}^2)=O(2^{n-k-3})$

但是这个复杂度与 $k$ 有关,不准确,考虑每一层有 $2^{k-1}$ 个节点,那么我们分层计算时间复杂度

每一层的时间复杂度就是 $O(2^{n-k-3}×2^{k-1})=O(2^{2n-4})$

有 $n$ 层,总时间复杂度为 $O(n2^{2n-4})$

时间复杂度有了,似乎不会超时。

开始码代码,但是会发现一个很大的问题:好像这个 $dp$ 数组的空间有点大?

那么我们要省掉一维,哪一维呢?

发现 $s$ 是十分好表示的,我们可以在 $dfs$ 的时候带一个参数 $s$ 来替代掉这一维就可以了。

代码见下:膜拜$trymyedge(lj)$大佬

#include <bits/stdc++.h>
#define mz 1000000007
using namespace std; int n, t;
int c[1005][15][2], siz[15];
int dp[2005][1005];
int add[1005][2005][2]; void dfs(int x, int y, int z) {
if (z == n) {
dp[x][0] = max(dp[x][0], add[y][x - t][0]);
dp[x][1] = max(dp[x][1], add[y][x - t][1]);
} else {
for (int i = 0; i <= siz[z]; i++) dp[x * 2][i] = dp[x * 2 + 1][i] = 0;
dfs(x * 2, y, z + 1);
dfs(x * 2 + 1, y, z + 1);
for (int i = 0; i <= siz[z]; i++)
for (int j = 0; j <= siz[z]; j++)
dp[x][i + j] = max(dp[x][i + j], dp[x * 2][i] + dp[x * 2 + 1][j]);
for (int i = 0; i <= siz[z]; i++) dp[x * 2][i] = dp[x * 2 + 1][i] = 0;
dfs(x * 2, y + siz[z], z + 1);
dfs(x * 2 + 1, y + siz[z], z + 1);
for (int i = 0; i <= siz[z]; i++)
for (int j = 0; j <= siz[z]; j++)
dp[x][i + j] = max(dp[x][i + j], dp[x * 2][i] + dp[x * 2 + 1][j]);
}
} int main() {
int m, x, ans = 0;
scanf("%d%d", &n, &m);
t = 1 << (n - 1);
siz[n - 1] = 1;
for (int i = n - 2; i >= 1; i--) siz[i] = siz[i + 1] * 2;
for (int i = 0; i < t; i++)
for (int j = 0; j < n - 1; j++) scanf("%d", &c[i][j][1]);
for (int i = 0; i < t; i++)
for (int j = 0; j < n - 1; j++) scanf("%d", &c[i][j][0]);
for (int i = 0; i < t; i++)
for (int j = 0; j < t; j++) {
x = i;
for (int k = 0; k < n - 1; k++) {
if (x % 2)
add[i][j][1] += c[j][k][1];
else
add[i][j][0] += c[j][k][0];
x /= 2;
}
}
dfs(1, 0, 1);
for (int i = 0; i <= m; i++) ans = max(ans, dp[1][i]);
printf("%d\n", ans);
return 0;
}

「JLOI2015」战争调度的更多相关文章

  1. 「JLOI2015」战争调度 解题报告

    「JLOI2015」战争调度 感觉一到晚上大脑就宕机了... 题目本身不难,就算没接触过想想也是可以想到的 这个满二叉树的深度很浅啊,每个点只会和它的\(n-1\)个祖先匹配啊 于是可以暴力枚举祖先链 ...

  2. 【LOJ】#2111. 「JLOI2015」战争调度

    题解 记录一个数组dp[i][S][k]表示第i个点,它上面所有的点的状态(参军或者后勤)可以用状态S来表示,一共有k个平民参军的最大收益,当然数组开不下,可以用vector动态开 我们对于每个平民枚 ...

  3. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  4. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

  5. 「JLOI2015」管道连接 解题报告

    「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cct ...

  6. 「JSOI2018」战争

    「JSOI2018」战争 解题思路 我们需要每次求给一个凸包加上一个向量后是否与另外一个凸包相交,也就是说是否存在 \[ b\in B,(b+w)\in A \] 这里 \(A, B\) 表示凸包内部 ...

  7. Solution -「JLOI 2015」「洛谷 P3262」战争调度

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 层的完全二叉树,你把每个结点染成黑色或白色,满足黑色叶子个数不超过 \(m\).对于一个叶子 \(u\), ...

  8. 【LOJ】#2549. 「JSOI2018」战争

    题解 仔细分析了一下,如果写个凸包+每次暴力半平面交可以得到70分,正解有点懵啊 然后用到了一个非常结论,但是大概出题人觉得江苏神仙一个个都可以手证的结论吧.. Minkowski sum 两个凸包分 ...

  9. 【LOJ】#2110. 「JLOI2015」管道连接

    题解 我们先跑一个斯坦纳树出来 斯坦纳树是什么,是一个包含点集里的点联通所需要的最小的价值,显然他们联通的方式必然是一棵树 我们可以设一个状态为\(dis[i][S]\)表示以第i个点为根,点集为\( ...

随机推荐

  1. 简单的jquery Ajax进行登录!

    本案例包括login.html.login.php.jquery-1.12.0.min.js三个文件,只需将这三个文件放到同一文件夹下,即可运行. login.html: <!DOCTYPE h ...

  2. python练习:使用二分法查找求近似平方根,使用二分法查找求近似立方根。

    python练习:使用二分法查找求近似平方根,使用二分法查找求近似立方根. 重难点:原理为一个数的平方根一定在,0到这个数之间,那么就对这之间的数,进行二分遍历.精确度的使用.通过最高值和最低值确定二 ...

  3. centos610无桌面安装JDK

     Centos610系列配置 1.使用yum查找jdk: yum search java|grep jdk    2.选择安装截图中选中的版本 yum install java-1.8.0-openj ...

  4. UIView的API

    - (instancetype)initWithFrame:(CGRect)frame; 使用指定的框架矩形初始化并返回新分配的视图对象. - (instancetype)initWithCoder: ...

  5. PHP将json或对象转成数组

    今天老大突然给了我一个小任务,给我一个txt文件,里边是很多的json字串,要求将这些字串转换成php中的数组: 于是开足火力,用了将进5分钟的时间完成了任务,代码如下: $jsonStr = fil ...

  6. window下jenkins+allure+邮箱发送

    一.安装allure 1)下载 allure.zip 下载地址:allure-github: https://github.com/allure-framework/allure2 2)解压到本地目录 ...

  7. python安装MySQLclient

    直接使用pip命令安装mysqlclient : pip3 install mysqlclient 如果windows安装不了MySQL-python mysqlclient 参考以下解决方案: 这个 ...

  8. linux磁盘管理2-raid,lvm

    raid 多个磁盘合成一个“阵列”来提供更好的性能.冗余,或者两者都提供 提高IO能力 磁盘并行读写 提高耐用性 磁盘冗余来实现 级别:多块磁盘组织在一起的工作方式有所不同 RAID实现的方式 外接式 ...

  9. 【转】Swagger详解(SpringBoot+Swagger集成)

    Swagger-API文档接口引擎Swagger是什么 Swagger是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目标是使客户端和文件系统作为服务器 ...

  10. Titer软件学习(Translation Initiation siTE detectoR)

    Titer Source Codes lnk: https://github.com/zhangsaithu/titer 函数: collections.namedtuple()函数:https:// ...