分治与递归-Starssen矩阵乘法





代码实现:
/**
* 矩阵乘法求解
* @author Administrator
*
*/
public class Strassen {
public static final int NUMBER = 4;
private static int[][] A;
private static int[][] B; public Strassen() {
A = new int[NUMBER][NUMBER];
B = new int[NUMBER][NUMBER];
} public int[][] starssen(int[][] A, int[][] B) {
int divide_length = A.length / 2;
// 定义一些中间变量
int[][] result = new int[A.length][A.length]; int[][] M1 = new int[divide_length][divide_length];
int[][] M2 = new int[divide_length][divide_length];
int[][] M3 = new int[divide_length][divide_length];
int[][] M4 = new int[divide_length][divide_length];
int[][] M5 = new int[divide_length][divide_length];
int[][] M6 = new int[divide_length][divide_length];
int[][] M7 = new int[divide_length][divide_length]; int[][] C11 = new int[divide_length][divide_length];
int[][] C12 = new int[divide_length][divide_length];
int[][] C21 = new int[divide_length][divide_length];
int[][] C22 = new int[divide_length][divide_length]; int[][] A11 = new int[divide_length][divide_length];
int[][] A12 = new int[divide_length][divide_length];
int[][] A21 = new int[divide_length][divide_length];
int[][] A22 = new int[divide_length][divide_length]; int[][] B11 = new int[divide_length][divide_length];
int[][] B12 = new int[divide_length][divide_length];
int[][] B21 = new int[divide_length][divide_length];
int[][] B22 = new int[divide_length][divide_length]; if (A.length == 2) {
result = multi(A, B, A.length);
} else {
// 首先将矩阵A,B分为4块
for (int i = 0; i < divide_length; ++i) {
for (int j = 0; j < divide_length; ++j) {
A11[i][j] = A[i][j];
A12[i][j] = A[i][j + divide_length];
A21[i][j] = A[i + divide_length][j];
A22[i][j] = A[i + divide_length][j + divide_length]; B11[i][j] = B[i][j];
B12[i][j] = B[i][j + divide_length];
B21[i][j] = B[i + divide_length][j];
B22[i][j] = B[i + divide_length][j + divide_length];
}
} // 计算M1
M1 = starssen(A11, sub(B12, B22, divide_length));
// 计算M2
M2 = starssen(add(A11, A12, divide_length), B22);
// 计算M3
M3 = starssen(add(A21, A22, divide_length), B11);
// 计算M4
M4 = starssen(A22, sub(B21, B11, divide_length));
// 计算M5
M5 = starssen(add(A11, A22, divide_length), add(B11, B22, divide_length));
// 计算M6
M6 = starssen(sub(A12, A22, divide_length), add(B21, B22, divide_length));
// 计算M7
M7 = starssen(sub(A11, A21, divide_length), add(B11, B12, divide_length)); // 计算C11,C12,C21,C22
C11 = add(sub(add(M5, M4, divide_length), M2, divide_length), M6, divide_length);
C12 = add(M1, M2, divide_length);
C21 = add(M3, M4, divide_length);
C22 = sub(sub(add(M5, M1, divide_length), M3, divide_length), M7, divide_length); // 合并C11,C12,C21,C22到C
for (int i = 0; i < divide_length; ++i) {
for (int j = 0; j < divide_length; ++j) {
result[i][j] = C11[i][j];
result[i][j + divide_length] = C12[i][j];
result[i + divide_length][j] = C21[i][j];
result[i + divide_length][j + divide_length] = C22[i][j];
}
}
}
return result;
} public static int[][] initial() {
int [][] result = new int[NUMBER][NUMBER];
for (int i = 0; i < NUMBER; ++i) {
for (int j = 0; j < NUMBER; ++j) {
// 采用Math生成1~10之间的随机数
result[i][j] = (int)(Math.random()*10);
}
}
return result;
} public void output(int[][] result) {
for (int b[] :result) {
for (int temp : b) {
System.out.print(temp + " ");
}
System.out.println();
}
} /**
* 蛮力求解矩阵乘法
* @param a:矩阵a n*n
* @param b:矩阵b n*n
* @param n: 矩阵大小
*/
public int[][] multi(int a[][], int b[][], int n) {
int result[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
result[i][j] = 0;
for (int k = 0; k < n; ++k) {
result[i][j] += a[i][k] * b[k][j];
}
}
}
return result;
} /**
* 矩阵加法
* @param a
* @param b
* @param n
* @return
*/
public int[][] add(int a[][], int b[][], int n) {
int result[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
result[i][j] = a[i][j] + b[i][j];
}
}
return result;
} /**
* 矩阵减法
* @param a
* @param b
* @param n
* @return
*/
public int[][] sub(int a[][], int b[][], int n) {
int result[][] = new int[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
result[i][j] = a[i][j] - b[i][j];
}
}
return result;
} public static void main(String[] args) {
Strassen s = new Strassen();
A = initial();
B = initial();
s.output(A);
System.out.println("----------------------");
s.output(B);
System.out.println("----------------------"); s.output(s.multi(A, B, NUMBER));
System.out.println("----------------------"); int K[][] = new int[2][2];
K = s.starssen(A, B);
s.output(K);
}
}
分治与递归-Starssen矩阵乘法的更多相关文章
- 第四章 分治策略 4.2 矩阵乘法的Strassen算法
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import ...
- bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 裸矩阵乘法. 代码如下: #include<iostream> #incl ...
- bzoj 3231 [Sdoi2008]递归数列——矩阵乘法
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- [luogu2461 SDOI2008] 递归数列 (矩阵乘法)
传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...
- P2461 [SDOI2008]递归数列 矩阵乘法+构造
还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...
- BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法
BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...
- bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】
今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...
随机推荐
- Aircrack-ng无线审计工具破解无线密码
Aircrack-ng工具 Aircrack-ng是一个与802.11标准的无线网络分析的安全软件,主要功能有网络探测.数据包嗅探捕获.WEP和WPA/WPA2-PSK破解.Aircrack可以工作在 ...
- Simulink仿真入门到精通(十四) Simulink自定义环境
14.1 Simulink环境自定义功能 sl_sustomization.m函数是Simulink提供给用户使用MATLAB语言自定义Simulink标准人机界面的函数机制.若sl_sustomiz ...
- 01 UIPath抓取网页数据并导出Excel(非Table表单)
上次转载了一篇<UIPath抓取网页数据并导出Excel>的文章,因为那个导出的是table标签中的数据,所以相对比较简单.现实的网页中,有许多不是通过table标签展示的,那又该如何处理 ...
- ML-Agents(二)创建一个学习环境
ML-Agents(二)创建一个学习环境 一.前言 上一节我们讲了如何配置ML-Agents环境,这一节我们创建一个示例,主要利用Reinforcement Learning(强化学习). 如上图,本 ...
- Redis集群搭建及选举原理
redis集群简述 哨兵模式中如果主从中master宕机了,是通过哨兵来选举出新的master,在这个选举切换主从的过程,整个redis服务是不可用的.而且哨兵模式中只有一个主节点对外提供服务,因此没 ...
- 五分钟完成 ABP vNext 通讯录 App 开发
五分钟完成 ABP vNext 通讯录 App 开发 ABP vNext(后文简称Abp)是 Volo 公司堪称艺术品级的应用开发框架,它基于领域驱动设计(DDD)的思维,创新地采用了模块化的设计.A ...
- ubuntu与windows相关配置内容
安装.配置.启动FTP服务 执行以下命令安装,安装后即会自动运行: sudo apt-get install vsftpd 修改vcftpd的配置文件/etc/vsftpd.conf,将下面几行前面的 ...
- 在vscode中怎样debug调试go程序
随着互联网时代的飞速发展,我们编码使用的开发利器也在不断更新换代,古话说工欲善其事必先利其器,对于Java开发者而言,eclipse和idea这两款神器各有千秋,因自己的爱好可以选取不同的IDE,但是 ...
- 面试刷题12:zero copy是怎么回事?
文件copy是java的io部分不可忽视的内容. 我是李福春,我在准备面试,今天的问题是: zero-copy是怎么回事? 操作系统的空间划分为内核态空间, 用户态空间: 内核态空间相对操作系统具备更 ...
- C 2014年笔试题
1.指出程序中的错误,说明原因并修正 int *p,*q; p=malloc(sizeof(int)*20); q=malloc(sizeof(int)*10); … q=p; … free(p); ...