[codeforces 200 E Tractor College]枚举,扩展欧几里得,三分
题目出自 Codeforces Round #126 (Div. 2) 的E。
题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz=s,使得f(x,y,z)=|ax-by|+|by-cz|最小
思路:枚举z,得到一个方程ax+by=s-cz,用扩展欧几里得求出这个方程的一个解,然后三分通解的整系数,求出最小f值。至于为什么可以三分画画图就清楚了,两个绝对值函数叠加在一起最多只有三种状态(第一维表示临界点较小的那个绝对值函数):(降,降),(升,降),(升,升),无论两个函数哪个变化快,最终趋势都是:降然后升(由于临界点的情况不同,可能变成了单调的,但并不影响我们用三分求解)。
思来想去,决定搞一个三分的框架来避免头疼的临界问题(这是求最小值,求最大值时只需把<=换成>=即可,另外函数值在一段范围内不发生变化可能导致结果出错):
1
2
3
4
5
6
7
|
int L = ..., R = ...; while (L < R) { int M1 = L + (R - L) / 3, M2 = R - (R - L) / 3; if (F(M1) <= F(M2)) R = M2 - 1; else L = M1 + 1; } solve(L); |
出while循环后 L=R=目标解
下面是题目的源码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/* ******************************************************************************** */ #include <iostream> // #include <cstdio> // #include <cmath> // #include <cstdlib> // #include <cstring> // #include <vector> // #include <ctime> // #include <deque> // #include <queue> // #include <algorithm> // #include <map> // #include <cmath> // using namespace std; // // #define pb push_back // #define mp make_pair // #define X first // #define Y second // #define all(a) (a).begin(), (a).end() // #define fillchar(a, x) memset(a, x, sizeof(a)) // // typedef pair< int , int > pii; // typedef long long ll; // typedef unsigned long long ull; // // #ifndef ONLINE_JUDGE // void RI(vector< int >&a, int n){a.resize(n); for ( int i=0;i<n;i++) scanf ( "%d" ,&a[i]);} // void RI(){} void RI( int &X){ scanf ( "%d" ,&X);} template < typename ...R> // void RI( int &f,R&...r){RI(f);RI(r...);} void RI( int *p, int *q){ int d=p<q?1:-1; // while (p!=q){ scanf ( "%d" ,p);p+=d;}} void print(){cout<<endl;} template < typename T> // void print( const T t){cout<<t<<endl;} template < typename F, typename ...R> // void print( const F f, const R...r){cout<<f<< ", " ;print(r...);} template < typename T> // void print(T*p, T*q){ int d=p<q?1:-1; while (p!=q){cout<<*p<< ", " ;p+=d;}cout<<endl;} // #endif // ONLINE_JUDGE // template < typename T> bool umax(T&a, const T&b){ return b<=a? false :(a=b, true );} // template < typename T> bool umin(T&a, const T&b){ return b>=a? false :(a=b, true );} // template < typename T> // void V2A(T a[], const vector<T>&b){ for ( int i=0;i<b.size();i++)a[i]=b[i];} // template < typename T> // void A2V(vector<T>&a, const T b[]){ for ( int i=0;i<a.size();i++)a[i]=b[i];} // // const double PI = acos (-1.0); // const int INF = 1e9 + 7; // // /* -------------------------------------------------------------------------------- */ ll x, y, z, a, b, c, a0, b0; ll gcd(ll a, ll b) { return b? gcd(b, a % b) : a; } void gcd(ll a, ll b, ll &d, ll &x, ll &y) { if (!b) { d = a; x = 1; y = 0; } else { gcd(b, a % b, d, y, x); y -= x * (a / b); } } ll f(ll k) { ll xx = x + k * b0, yy = y - k * a0; return abs (xx * a - yy * b) + abs (yy * b - z * c); } bool chk(ll k1, ll k2) { if (x + k1 * b0 < 0) return false ; if (x + k1 * b0 > z) return true ; if (y - k1 * a0 < 0) return true ; if (y - k1 * a0 > z) return false ; if (x + k2 * b0 < 0) return false ; if (x + k2 * b0 > z) return true ; if (y - k2 * a0 < 0) return true ; if (y - k2 * a0 > z) return false ; if (x + k1 * b0 > y - k1 * a0) return true ; if (x + k2 * b0 > y - k2 * a0) return true ; return f(k1) <= f(k2); } int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE int n, s; cin >> n >> s; int cnt[3] = {}; for ( int i = 0; i < n; i ++) { int x; scanf ( "%d" , &x); cnt[x - 3] ++; } a = cnt[0], b = cnt[1], c = cnt[2]; ll ans = INF, ix, iy, iz; for (z = 1; z * c <= s; z ++) { ll g; gcd(a, b, g, x, y); if ((s - z * c) % g) continue ; ll K = (s - z * c) / g; x *= K; y *= K; a0 = a / g; b0 = b / g; ll L = -INF, R = INF; while (L < R) { ll M1 = L + (R - L) / 3, M2 = R - (R - L) / 3; if (chk(M1, M2)) R = M2 - 1; else L = M1 + 1; } ll xx = x + L * b0, yy = y - L * a0; if (0 <= xx && xx <= yy && yy <= z) { if (umin(ans, f(L))) { ix = xx; iy = yy; iz = z; } } } if (ans < INF) cout << ix << " " << iy << " " << iz << endl; else puts ( "-1" ); return 0; } /* ******************************************************************************** */ |
[codeforces 200 E Tractor College]枚举,扩展欧几里得,三分的更多相关文章
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- Codeforces Round #451 (Div. 2) B. Proper Nutrition【枚举/扩展欧几里得/给你n问有没有两个非负整数x,y满足x·a + y·b = n】
B. Proper Nutrition time limit per test 1 second memory limit per test 256 megabytes input standard ...
- UVa 12169 (枚举+扩展欧几里得) Disgruntled Judge
题意: 给出四个数T, a, b, x1,按公式生成序列 xi = (a*xi-1 + b) % 10001 (2 ≤ i ≤ 2T) 给出T和奇数项xi,输出偶数项xi 分析: 最简单的办法就是直接 ...
- BZOJ2800 [Poi2012]Leveling Ground 【扩展欧几里得 + 三分 + 堆】
题目链接 BZOJ2800 题解 区间加极难操作,差分之后可转化为两点一加一减 那么现在问题就将每个点暂时独立开来 先判定每个点是否被\((A,B)\)整除,否则无解 之后我们先将\(A,B\)化为互 ...
- [zoj3593]扩展欧几里得+三分
题意:给一个数A,有6种操作,+a,-a,+b,-b,+(a+b),-(a+b),每次选择一种,用最少的次数变成B. 思路:由于不同的操作先后顺序对最后的结果没有影响,并且加一个数与减一个相同的数不能 ...
- 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
- 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...
- codeforces 1244C (思维 or 扩展欧几里得)
(点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w ...
- Codeforces 7C 扩展欧几里得
扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(- ...
随机推荐
- JavaScript的运行机制!!!很重要很重要!!!!!!请看大神操作!
https://juejin.im/post/59e85eebf265da430d571f89
- Spring Data REST不完全指南(三)
上一篇我们介绍了使用Spring Data REST时的一些高级特性,以及使用代码演示了如何使用这些高级的特性.本文将继续讲解前面我们列出来的七个高级特性中的后四个.至此,这些特性能满足我们大部分的接 ...
- [Yii2] 快速套模板,加载JS,CSS(HTML标签<base>)
刚开始学,弄了好久,不知道怎么加载JS.CSS,以及怎么不加载YII2自带的模板!其实真的好简单! 补: 其实是我垃圾,YII2默认访问路径是WEB,所以把style文件放到web下就能加载! 首先把 ...
- Python爬取全球疫情数据,实现可视化显示地图数据(附代码)
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 武汉地区,目前已经实现住院患者清零了,国内疫情已经稳定,然而中国以外新冠确 ...
- python学习笔记(一)---字符串与列表
字符串的一些处理 字符串的大小写 name="lonmar hb" print(name.upper())#全大写 print(name.lower())#全小写 print(na ...
- webug3.0靶场渗透基础Day_1
第一关: 最简单的get注入 单引号报错 http://192.168.129.136/pentest/test/sqli/sqltamp.php?gid=1' order by 5 --+ ...
- DDOS攻击攻击种类和原理
DoS攻击.DDoS攻击和DRDoS攻击相信大家已经早有耳闻了吧!DoS是Denial of Service的简写,就是拒绝服务,而DDoS就是Distributed Denial of Servic ...
- Java第一阶段作业总结
目录 0.前言 1.作业过程总结 2.OO设计心得 3.测试的理解与实践 4.课程收获 5.对课程的建议 前言 本次博客针对第一阶段的三次作业发表总结,作业要求主要是初学者对于Java的基本语法.用法 ...
- 【shell】Shell变量基础及深入
1. 什么是变量 变量就是用一个固定的字符串(也可能是字符数字等的组合),替代更多更复杂的内容,这个内容里可能还会包含变量和路径,字符串等其他内容. 变量的定义是存在内存中. x=1 y=2 2. 变 ...
- codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质
E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...