【题解】P1972 [SDOI2009]HH的项链 - 树状数组
P1972 [SDOI2009]HH的项链
声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。
题目描述
\(HH\) 有一串由各种漂亮的贝壳组成的项链。\(HH\) 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。\(HH\) 不断地收集新的贝壳,因此,他的项链变得越来越长。
有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答…… 因为项链实在是太长了。于是,他只好求助睿智的你,来解决这个问题。
输入格式
一行一个正整数 \(n\) ,表示项链长度。
第二行 \(n\) 个正整数 \(a_i\) ,表示项链中第 \(i\) 个贝壳的种类。
第三行一个整数 \(m\),表示 \(H\) 询问的个数。
接下来 \(m\) 行,每行两个整数 \(l,r\) 表示询问的区间。
输出格式
输出 \(m\) 行,每行一个整数,依次表示询问对应的答案。
Solution
首先贴一下我觉得写得非常清楚的题解,以下转载自这篇题解:
"这个题用树状数组,线段树等等都可以做,不过用树状数组写起来更方便。
此题首先应考虑到这样一个结论:
对于若干个询问的区间 \([l,r]\),如果他们的r都相等的话,那么项链中出现的同一个数字,一定是只关心出现在最右边的那一个的,例如:
项链是:\(1 \ 3 \ 4 \ 5 \ 1\)
那么,对于 \(r=5\) 的所有的询问来说,第一个位置上的 \(1\) 完全没有意义,因为 \(r\) 已经在第五个 \(1\) 的右边,对于任何查询的 \([L,5]\) 区间来说,如果第一个 \(1\) 被算了,那么他完全可以用第五个 \(1\) 来替代。
因此,我们可以对所有查询的区间按照 \(r\) 来排序,然后再来维护一个树状数组,这个树状数组是用来干什么的呢?看下面的例子:
\(1 \ 2 \ 1 \ 3\)
对于第一个 \(1\),\(insert(1,1)\);表示第一个位置出现了一个不一样的数字,此时树状数组所表示的每个位置上的数字(不是它本身的值而是它对应的每个位置上的数字)是:\(1 \ 0 \ 0 \ 0\)
对于第二个 \(2\),\(insert(2,1)\);此时树状数组表示的每个数字是 \(1 \ 1 \ 0 \ 0\)
对于第三个 \(1\),因为之前出现过 \(1\) 了,因此首先把那个 \(1\) 所在的位置删掉 \(insert(1,-1)\),然后在把它加进来 \(insert(3,1)\) 。此时每个数字是\(0 \ 1 \ 1 \ 0\)
如果此时有一个询问 \([2,3]\),那么直接求 \(sum(3)-sum(2-1)=2\)就是答案。
题解清楚么?"
看完之后觉得,哇,这道题也就这样嘛,不难啊。可是为什么我接触树状数组一个多学期了,这样基础的题目都想不到,运用不好呢?
一个数据结构,最重要的就是运用,于是借这道题简单理顺一下树状数组。
树状数组支持以下:
\(1.\) 单点修改
\(2.\) 区间修改(维护差分)
\(3.\) 单点查询
\(4.\) 前缀查询
\(5.\) 区间查询(实际上是前缀的运用)
所以,碰到一道数据结构的题,若它可以通过发现本题的某些特殊性质,进而转化为和 前缀和、区间和 有关的问题,那么就可以尝试用树状数组做。
例如这道题,经过观察后(\(ps:\) 这个观察往往也是非常非常重要的,一般来说可以多手算几组合适的样例)发现区间的变动非常不好处理,那么我们就把 \(r\) 相等的区间分为一组来考虑,再排序,进一步发现种类数只和最靠近 \(r\) 的有关,从而转化为一个动态求区间值的问题。
Code
#include<cstdio>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cmath>
#include<cstring>
#define lowbit(x) x & -x
#define F(i, x, y) for(int i = x; i <= y; ++ i)
using namespace std;
int read();
const int N = 1e6 + 5;
int n, q;
int a[N];
int tree[N];
int last[N];
struct node{
int l, r, num, ans;
}k[N];
bool cmp1(node x, node y){ return x.r < y.r;}
bool cmp2(node x, node y){ return x.num < y.num;}
void add(int pos, int v)
{
for(; pos <= n; pos += lowbit(pos)) tree[pos] += v;
}
int getsum(int pos)
{
int res = 0;
for(; pos; pos -= lowbit(pos)) res += tree[pos];
return res;
}
int main()
{
n = read();
F(i, 1, n) a[i] = read();
q = read();
F(i, 1, q) k[i].l = read(), k[i].r = read(), k[i].num = i;
sort(k + 1, k + 1 + q, cmp1);
F(i, 1, q)
{
if(k[i].r != k[i - 1].r)
F(j, k[i - 1].r + 1, k[i].r)
{
if(last[a[j]]) add(last[a[j]], -1);
add(j, 1), last[a[j]] = j;
}
k[i].ans = getsum(k[i].r) - getsum(k[i].l - 1);
}
sort(k + 1, k + 1 + q, cmp2);
F(i, 1, q) printf("%d\n", k[i].ans);
return 0;
}
int read()
{
int x = 0;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
【题解】P1972 [SDOI2009]HH的项链 - 树状数组的更多相关文章
- luogu P1972 [SDOI2009]HH的项链 |树状数组 或 莫队
题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的贝壳,因此,他的项链变得越来越长. ...
- 洛谷 P1972 [SDOI2009]HH的项链——树状数组
先上一波题目 https://www.luogu.org/problem/P1972 这道题是询问区间内不同数的个数 明显不是正常的数据结构能够维护的 首先考虑 因为对于若干个询问的区间[l,r],如 ...
- 【bzoj1878】[SDOI2009]HH的项链 树状数组
题目描述 HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变得越来越长.有一 ...
- 【bzoj1878】[SDOI2009]HH的项链 - 树状数组 - 离线处理
[SDOI2009]HH的项链 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4834 Solved: 2384[Submit][Status][Dis ...
- [BZOJ1878] [SDOI2009] HH的项链 (树状数组)
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...
- bzoj 1878: [SDOI2009]HH的项链 ——树状数组+ 差分
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此他的项链变得 ...
- [SDOI2009]HH的项链 树状数组 BZOJ 1878
题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的贝壳,因此,他的项链 ...
- 【P1972】HH的项链——树状数组+询问离线
(题面摘自luogu) 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集 ...
- BZOJ1878 [SDOI2009]HH的项链 树状数组 或 莫队
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1878 题意概括 给出一个长度为n的序列,用m次询问,问区间Li~Ri中有多少种不同的数. 0< ...
随机推荐
- Transformers 词汇表 | 二
作者|huggingface 编译|VK 来源|Github 词汇表每种模型都不同,但与其他模型相似.因此,大多数模型使用相同的输入,此处将在用法示例中进行详细说明. 输入ID 输入id通常是传递给模 ...
- 一份从入门到精通NLP的完整指南 | NLPer
该小博主介绍 本人:笔名zenRRan,方向自然语言处理,方法主要是深度学习. 未来的目标:人工智能之自然语言处理博士. 写公众号目的:将知识变成开源,让每个渴求知识而难以入门人工智能的小白以及想进阶 ...
- iOS 重构AppDelegate
一.Massive AppDelegate AppDelegate 是应用程序的根对象,它连接应用程序和系统,确保应用程序与系统以及其他应用程序正确的交互,通常被认为是每个 iOS 项目的核心. 随着 ...
- iOS UIViewController的瘦身计划
代码的组织结构,以及为何要这样写. 那些场景适合使用子控制器,那些场景应该避免使用子控制器? 分离UITableView的数据源和UITableViewDataSource协议. MVVM的重点是Vi ...
- 《java编程思想》对象导论
1.抽象过程 所有编程语言都提供抽象机制.可以认为,人们所能够解决的问题的复杂性直接取决于抽象的类型和质量,所谓的'类型'是指“所抽象的是什么?”汇编语言是对底层机器的轻微抽象. java的基本 特性 ...
- [noip2012]国王游戏<贪心+高精度>
题目链接: https://vijos.org/p/1779 https://www.luogu.org/problem/show?pid=1080 http://codevs.cn/problem/ ...
- [noip模拟赛]某种数列问题<dp>
某种数列问题 (jx.cpp/c/pas) 1000MS 256MB 众所周知,chenzeyu97有无数的妹子(阿掉!>_<),而且他还有很多恶趣味的问题,继上次纠结于一排妹子的排法以 ...
- cento升级openssl依旧显示老版本
不久前拿到了一季度的服务器漏洞扫描报告,还是一些老生常谈的软件.按照报告上的漏洞一个个处理,开始升级openssl的时候一切都很顺利,上传源码包,解压,编译,安装,全部都没有报错.opessl --v ...
- JS烟花案例优化版
不明白为什么是烟花优化版本的先参考作者的烟花基础版本 烟花优化版本主要实在优化爆炸的范围和运动上做了优化,爆炸范围我们采用已圆的爆炸方式,以鼠标点击的位置为圆形爆炸的烟花效果 <!DOCTYPE ...
- Maximum splitting
Maximum splitting You are given several queries. In the i-th query you are given a single positive i ...