代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

先看下优化器实现的代码:

import numpy as np
from mlfromscratch.utils import make_diagonal, normalize # Optimizers for models that use gradient based methods for finding the
# weights that minimizes the loss.
# A great resource for understanding these methods:
# http://sebastianruder.com/optimizing-gradient-descent/index.html class StochasticGradientDescent():
def __init__(self, learning_rate=0.01, momentum=0):
self.learning_rate = learning_rate
self.momentum = momentum
self.w_updt = None def update(self, w, grad_wrt_w):
# If not initialized
if self.w_updt is None:
self.w_updt = np.zeros(np.shape(w))
# Use momentum if set
self.w_updt = self.momentum * self.w_updt + (1 - self.momentum) * grad_wrt_w
# Move against the gradient to minimize loss
return w - self.learning_rate * self.w_updt class NesterovAcceleratedGradient():
def __init__(self, learning_rate=0.001, momentum=0.4):
self.learning_rate = learning_rate
self.momentum = momentum
self.w_updt = np.array([]) def update(self, w, grad_func):
# Calculate the gradient of the loss a bit further down the slope from w
approx_future_grad = np.clip(grad_func(w - self.momentum * self.w_updt), -1, 1)
# Initialize on first update
if not self.w_updt.any():
self.w_updt = np.zeros(np.shape(w)) self.w_updt = self.momentum * self.w_updt + self.learning_rate * approx_future_grad
# Move against the gradient to minimize loss
return w - self.w_updt class Adagrad():
def __init__(self, learning_rate=0.01):
self.learning_rate = learning_rate
self.G = None # Sum of squares of the gradients
self.eps = 1e-8 def update(self, w, grad_wrt_w):
# If not initialized
if self.G is None:
self.G = np.zeros(np.shape(w))
# Add the square of the gradient of the loss function at w
self.G += np.power(grad_wrt_w, 2)
# Adaptive gradient with higher learning rate for sparse data
return w - self.learning_rate * grad_wrt_w / np.sqrt(self.G + self.eps) class Adadelta():
def __init__(self, rho=0.95, eps=1e-6):
self.E_w_updt = None # Running average of squared parameter updates
self.E_grad = None # Running average of the squared gradient of w
self.w_updt = None # Parameter update
self.eps = eps
self.rho = rho def update(self, w, grad_wrt_w):
# If not initialized
if self.w_updt is None:
self.w_updt = np.zeros(np.shape(w))
self.E_w_updt = np.zeros(np.shape(w))
self.E_grad = np.zeros(np.shape(grad_wrt_w)) # Update average of gradients at w
self.E_grad = self.rho * self.E_grad + (1 - self.rho) * np.power(grad_wrt_w, 2) RMS_delta_w = np.sqrt(self.E_w_updt + self.eps)
RMS_grad = np.sqrt(self.E_grad + self.eps) # Adaptive learning rate
adaptive_lr = RMS_delta_w / RMS_grad # Calculate the update
self.w_updt = adaptive_lr * grad_wrt_w # Update the running average of w updates
self.E_w_updt = self.rho * self.E_w_updt + (1 - self.rho) * np.power(self.w_updt, 2) return w - self.w_updt class RMSprop():
def __init__(self, learning_rate=0.01, rho=0.9):
self.learning_rate = learning_rate
self.Eg = None # Running average of the square gradients at w
self.eps = 1e-8
self.rho = rho def update(self, w, grad_wrt_w):
# If not initialized
if self.Eg is None:
self.Eg = np.zeros(np.shape(grad_wrt_w)) self.Eg = self.rho * self.Eg + (1 - self.rho) * np.power(grad_wrt_w, 2) # Divide the learning rate for a weight by a running average of the magnitudes of recent
# gradients for that weight
return w - self.learning_rate * grad_wrt_w / np.sqrt(self.Eg + self.eps) class Adam():
def __init__(self, learning_rate=0.001, b1=0.9, b2=0.999):
self.learning_rate = learning_rate
self.eps = 1e-8
self.m = None
self.v = None
# Decay rates
self.b1 = b1
self.b2 = b2 def update(self, w, grad_wrt_w):
# If not initialized
if self.m is None:
self.m = np.zeros(np.shape(grad_wrt_w))
self.v = np.zeros(np.shape(grad_wrt_w)) self.m = self.b1 * self.m + (1 - self.b1) * grad_wrt_w
self.v = self.b2 * self.v + (1 - self.b2) * np.power(grad_wrt_w, 2) m_hat = self.m / (1 - self.b1)
v_hat = self.v / (1 - self.b2) self.w_updt = self.learning_rate * m_hat / (np.sqrt(v_hat) + self.eps) return w - self.w_updt

这里导入了了mlfromscratch.utils中的make_diagonal, normalize函数,它们在data_manipulation.py中。但是好像没有用到,还是去看一下这两个函数:

def make_diagonal(x):
""" Converts a vector into an diagonal matrix """
m = np.zeros((len(x), len(x)))
for i in range(len(m[0])):
m[i, i] = x[i]
return m
def normalize(X, axis=-1, order=2):
""" Normalize the dataset X """
l2 = np.atleast_1d(np.linalg.norm(X, order, axis))
l2[l2 == 0] = 1
return X / np.expand_dims(l2, axis)

make_diagonal()的作用是将x中的元素变成对角元素。

normalize()函数的作用是正则化。

补充:

  • np.linalg.norm(x, ord=None, axis=None, keepdims=False):需要注意ord的值表示的是范数的类型。
  • np.atleast_1d():改变维度,将输入直接视为1维,比如np.atleast_1d([1])的输出就是[1]
  • np.expand_dims():用于扩展数组的维度,要深入了解还是得去查一下。

然后再看看优化器的实现,以最常用的随机梯度下降为例:

class StochasticGradientDescent():
def __init__(self, learning_rate=0.01, momentum=0):
self.learning_rate = learning_rate
self.momentum = momentum
self.w_updt = None def update(self, w, grad_wrt_w):
# If not initialized
if self.w_updt is None:
self.w_updt = np.zeros(np.shape(w))
# Use momentum if set
self.w_updt = self.momentum * self.w_updt + (1 - self.momentum) * grad_wrt_w
# Move against the gradient to minimize loss
return w - self.learning_rate * self.w_updt

直接看带动量的随机梯度下降公式:

这里的β就是动量momentum的值,一般取值是0.9。正好是对应上面的公式,最后更新W和b就是:

其中 α就表示学习率learning_rate。

至于不同优化器之间的优缺点就不在本文的考虑追之中了,可以自行去查下。

【python实现卷积神经网络】优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam)的更多相关文章

  1. 各种优化器对比--BGD/SGD/MBGD/MSGD/NAG/Adagrad/Adam

    指数加权平均 (exponentially weighted averges) 先说一下指数加权平均, 公式如下: \[v_{t}=\beta v_{t-1}+(1-\beta) \theta_{t} ...

  2. 各种优化方法总结比较(sgd/momentum/Nesterov/adagrad/adadelta)

    前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. Batch gradient d ...

  3. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

  4. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  5. 【python实现卷积神经网络】开始训练

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 【python实现卷积神经网络】卷积层Conv2D反向传播过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. 【python实现卷积神经网络】全连接层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  8. 【python实现卷积神经网络】批量归一化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  9. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

随机推荐

  1. 什么是yarn,如何使用yarn安装项目依赖

    一.yarn的简介: Yarn是facebook发布的一款取代npm的包管理工具. 二.yarn的特点: 1.速度超快. Yarn 缓存了每个下载过的包,所以再次使用时无需重复下载. 同时利用并行下载 ...

  2. JVM 参数(转)

    Herry灬凌夜  转自:https://www.cnblogs.com/wuyx/p/9627542.html 常用的JVM配置参数 一.Trace 跟踪参数 在Eclipse中,如何打开GC的监控 ...

  3. 基于Python3 + appium的Ui自动化测试框架

    UiAutoTest 一.概要 数据驱动的Ui自动化框架 二.环境要求 框架基于Python3 + unittest + appium 运行电脑需配置adb.aapt的环境变量,build_tools ...

  4. IDEA启动项目报错:Cannot open URL.Please check this URL is correct

    IDEA启动项目报错:Cannot open URL.Please check this URL is correct 问题:IDEA启动SSM项目,使用的Tomcat,报错 Cannot open ...

  5. 视觉目标跟踪算法——SRDCF算法解读

    首先看下MD大神2015年ICCV论文:Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Learning Spa ...

  6. 1. python跨目录调用模块

    快速镜像安装第三方库 :  pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy (三方库名字) 同目录下,我们可以直接调用模块, ...

  7. 一个简单的方法去掉angular application中URLs的hashtag

    本文转载自:Pretty URLs in AngularJS: Removing the # By default, AngularJS will route URLs with a hashtag. ...

  8. 题解 P2070 【刷墙】

    前言 \(ZHK\)私人博客体验更佳 这道题目,\(n<=10^5\),显然在暗示我们使用\(n \log n\)的做法,我就是用了一个简单的贪心,通过了此题. 正文 在这道题中,我们发现,可以 ...

  9. 读Hadoop3.2源码,深入了解java调用HDFS的常用操作和HDFS原理

    本文将通过一个演示工程来快速上手java调用HDFS的常见操作.接下来以创建文件为例,通过阅读HDFS的源码,一步步展开HDFS相关原理.理论知识的说明. 说明:本文档基于最新版本Hadoop3.2. ...

  10. 解决在linux下的eclipse syso Alt+/无法使用

    1.绑定快捷键 2.配置proposal