classtorch.nn.RNN(*args**kwargs)

input_size – The number of expected features in the input x

hidden_size – The number of features in the hidden state h

num_layers – Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1

nonlinearity – The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’

bias – If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first – If True, then the input and output tensors are provided as (batch, seq, feature)

dropout – If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0

bidirectional – If True, becomes a bidirectional RNN. Default: False

有个参数一直理解错误,导致了认知困难

首先,RNN这里的序列长度,是动态的,不写在参数里的,具体会由输入的input参数而定

而num_layers并不是RNN的序列长度,而是堆叠层数,由上一层每个时间节点的输出作为下一层每个时间节点的输入

RNN的对象接受的参数,input维度是(seq_len, batch_size, input_dim),h0维度是(num_layers * directions, batch_size, hidden_dim)

其中,input的seq_len决定了序列的长度,h0是提供给每层RNN的初始输入,所有num_layers要和RNN的num_layers对得上

返回两个值,一个output,一个hn

hn的维度是(num_layers * directions, batch_size, hidden_dim),是RNN的右侧输出,如果是双向的话,就还有一个左侧输出

output的维度是(seq_len, batch_size, hidden_dim * directions),是RNN的上侧输出

pytorch RNN层api的几个参数说明的更多相关文章

  1. 自己动手实现深度学习框架-7 RNN层--GRU, LSTM

    目标         这个阶段会给cute-dl添加循环层,使之能够支持RNN--循环神经网络. 具体目标包括: 添加激活函数sigmoid, tanh. 添加GRU(Gate Recurrent U ...

  2. Zigbee协议栈OSAL层API函数【转载】

              OSAL层提供了很多的API来对整个的协议栈进行管理.主要有下面的几类:信息管理.任务同步.时间管理.中断管理.任务管理.内存管理.电源管理以及非易失存储管理.看到这些管理是不是感 ...

  3. 【转载】 Caffe BN+Scale层和Pytorch BN层的对比

    原文地址: https://blog.csdn.net/elysion122/article/details/79628587 ------------------------------------ ...

  4. [PyTorch] rnn,lstm,gru中输入输出维度

    本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是pos ...

  5. Android 访问Android Wear数据层Api——同步Data Items

    Data Items它被用来同步手机和wear数据接口,一个Date Items通常包含以下几个部分: Payload 字节数组.无论你需要设置数据类型,我们同意对象序列化和反序列化,大小不能超过10 ...

  6. pytorch rnn 2

    import torch import torch.nn as nn import numpy as np import torch.optim as optim class RNN(nn.Modul ...

  7. pytorch rnn

    温习一下,写着玩. import torch import torch.nn as nn import numpy as np import torch.optim as optim class RN ...

  8. pytorch --Rnn语言模型(LSTM,BiLSTM) -- 《Recurrent neural network based language model》

    论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : ...

  9. Pytorch基础——使用 RNN 生成简单序列

    一.介绍 内容 使用 RNN 进行序列预测 今天我们就从一个基本的使用 RNN 生成简单序列的例子中,来窥探神经网络生成符号序列的秘密. 我们首先让神经网络模型学习形如 0^n 1^n 形式的上下文无 ...

随机推荐

  1. MOOC(3)- python发送请求,返回的json数据被转码

    https://www.cnblogs.com/yoyoketang/p/10339210.html 问题:发送post请求,对post请求返回的json数据格式化,但是返回的结果被转码了 json. ...

  2. 概念--Maven仓库

    转:Maven:mirror和repository 区别 Tip: 默认中央仓库的地址:https://repo.maven.apache.org/maven2 1.Maven仓库主要有2种 remo ...

  3. Docker的自动构建镜像

    Dockerfile自动构建docker镜像类似ansible剧本,大小几kb手动做镜像:大小几百M+ dockerfile 支持自定义容器的初始命令 dockerfile主要组成部分: 基础镜像信息 ...

  4. 爬虫入门-使用python写简单爬虫

    从第一章到上一章为止,基本把python所有的基础点都已经包括了,我们有控制逻辑的关键字,有内置数据结构,有用于工程需要的函数和模块,又有了标准库和第三方库,可以写正规的程序了. python可以做非 ...

  5. 抛开贾跃亭!法拉第FF91能成功吗?

    在本届CES 2018上,FF 91又一次刷屏了,而且实实在在地允许试乘了. 抛开贾跃亭的因素不谈,你觉得FF 91能成功吗? 最开始知道法拉第FF91这款电动汽车的名字时,总感觉怪怪的--像是把法拉 ...

  6. loadrunner通过web的post请求方法测接口 2

    模拟APP发送请求给Cloud, 一般都是用户登录后.cloud会返回登录成功的消息并且返回一个cookie给app, app下次要做一些例如设置名称之类的工作,在请求消息里面会携带返回的cookie ...

  7. Tian Tian 菾菾 导游 陪同

    自画像系列是梵高的代表作之一,他是一位自学成才的画家,下笔完全自由,主观提取了当时印象派画家学到的技巧,在这幅画中,我们可以看到,颜色在画中的堆叠,色彩与笔在画中表现的形态,都表现出,梵高在他作画中内 ...

  8. 1,Hadoop知识储备

    Hadoop初学思维导图 1,Hadoop ··· Hadoop:     Hadoop的核心由HDFS和MapReduce组成.HDFS是分布式文件系统,是Hadoop生态圈的分布式数据存储基石:M ...

  9. LeetCode 232题用栈实现队列(Implement Queue using Stacks) Java语言求解

    题目链接 https://leetcode-cn.com/problems/implement-queue-using-stacks/ 题目描述 使用栈实现队列的下列操作: push(x) -- 将一 ...

  10. python3自动安装脚本,python3.x与python2.x共存

    1.前言: python3过程中,通过搜索一些文章参考安装过程发现比较麻烦,而且还出现一些不可预期的报错.python3环境需要升级openssl,所以为了部署到其他环境更方便,写自动安装脚本方式,且 ...