题意:有一个M*N的网格,有黑有白,反转使全部变为白色,求最小反转步数情况下的每个格子的反转次数,若最小步数有多个,则输出字典序最小的情况。解不存在,输出IMPOSSIBLE。

分析:

1、枚举第一行的所有反转情况,共2N。二进制枚举子集,可使字典序最小。

2、研究0~M-2行,分别确定当前行的下一行的反转情况。flip---每个格子是否反转,1---反转,0---不反转。

eg:第0行的第1个元素a[0][0],要使其变为白色,除了可以反转a[0][0],还可以a[0][1]和a[1][0]。

通过二进制枚举子集,可知flip[0][0],flip[0][1]的情况,再加上a[0][0],若考虑完这些因素,a[0][0]还是黑色,那么a[1][0]也需要反转,否则,不需反转。

3、最后验证一下a[M-1][0]~a[M-1][N-1]如果全为白色,则此操作可行。

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {0, -1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 15 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int a[MAXN][MAXN];
int flip[MAXN][MAXN];
int pic[MAXN][MAXN];
int M, N;
bool judge1(int x, int y){
return x >= 0 && x < M && y >= 0 && y < N;
}
int get_cnt(int x, int y){//得到周边及自身的翻转次数
int cnt = 0;
for(int i = 0; i < 5; ++i){//若某方向元素还未研究,则flip[tmpx][tmpy]为0,不影响计算结果
int tmpx = x + dr[i];
int tmpy = y + dc[i];
if(judge1(tmpx, tmpy)){
cnt += flip[tmpx][tmpy];
}
}
return cnt;
}
bool judge2(){//判断该枚举结果是否能使最后一行全为白色
for(int i = 0; i < N; ++i){
int cnt = get_cnt(M - 1, i);
if((cnt + a[M - 1][i]) % 2 != 0) return false;
}
return true;
}
int cal(){
for(int i = 0; i < M - 1; ++i){
for(int j = 0; j < N; ++j){
int cnt = get_cnt(i, j);
if((cnt + a[i][j]) % 2 != 0){//来自上左右自身的翻转后仍为黑色
flip[i + 1][j] = 1;
}
}
}
if(!judge2()) return -1;
int num = 0;
for(int i = 0; i < M; ++i){
for(int j = 0; j < N; ++j){
num += flip[i][j];
}
}
return num;
}
void solve(){
int ans = INT_INF;
for(int i = 0; i < (1 << N); ++i){
memset(flip, 0, sizeof flip);
for(int j = 0; j < N; ++j){
if(i & (1 << j)){
flip[0][j] = 1;
}
}
int cnt = cal();
if(cnt != -1){
if(cnt < ans){
ans = cnt;
memcpy(pic, flip, sizeof flip);
}
}
}
if(ans == INT_INF) printf("IMPOSSIBLE\n");
else{
for(int i = 0; i < M; ++i){
for(int j = 0; j < N; ++j){
if(j) printf(" ");
printf("%d", pic[i][j]);
}
printf("\n");
}
}
}
int main(){
scanf("%d%d", &M, &N);
for(int i = 0; i < M; ++i){
for(int j = 0; j < N; ++j){
scanf("%d", &a[i][j]);
}
}
solve();
return 0;
}

  

POJ - 3279 Fliptile(反转---开关问题)的更多相关文章

  1. 【POJ 3279 Fliptile】开关问题,模拟

    题目链接:http://poj.org/problem?id=3279 题意:给定一个n*m的坐标方格,每个位置为黑色或白色.现有如下翻转规则:每翻转一个位置的颜色,与其四连通的位置都会被翻转,但注意 ...

  2. POJ 3279 Fliptile ( 开关问题)

    题目链接 Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give ...

  3. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  4. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  5. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  6. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  7. POJ 3279 Fliptile(DFS+反转)

    题目链接:http://poj.org/problem?id=3279 题目大意:有一个n*m的格子,每个格子都有黑白两面(0表示白色,1表示黑色).我们需要把所有的格子都反转成黑色,每反转一个格子, ...

  8. POJ 3279 Fliptile(反转 +二进制枚举)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13631   Accepted: 5027 Descrip ...

  9. POJ 3279 Fliptile[二进制状压DP]

    题目链接[http://poj.org/problem?id=3279] 题意:给出一个大小为M*N(1 ≤ M ≤ 15; 1 ≤ N ≤ 15) 的图,图中每个格子代表一个灯泡,mp[i][j] ...

随机推荐

  1. 在 Scale Up 中使用 Health Check【转】

    对于多副本应用,当执行 Scale Up 操作时,新副本会作为 backend 被添加到 Service 的负载均衡中,与已有副本一起处理客户的请求.考虑到应用启动通常都需要一个准备阶段,比如加载缓存 ...

  2. 新闻网大数据实时分析可视化系统项目——21、大数据Web可视化分析系统开发

    1.基于业务需求的WEB系统设计 2.下载Tomcat并创建Web工程并配置相关服务 下载tomcat,解压并启动tomcat服务. 1)新建web app项目 创建好之后的效果 2)对tomcat进 ...

  3. Java常考面试题(二)(转)

    序言 昨天刚开始的"每日5题面试"这类文章,感觉还不错,把一些平常看似懂了的东西,弄清楚了.就像什么是虚拟机?这个问题,看起来知道,但是要说出个所以然来,又懵逼了,经常回过头来看看 ...

  4. other#一些问题的列表

    centos7及以后修改hostname, hostnamectl set-hostname centos7 centos7之前修改hostname, vi /etc/sysconfig/networ ...

  5. [题解] LuoguP2257 YY的GCD

    传送门 给\(n,m\),让你求 \[ \sum\limits_{i=1}^n \sum\limits_{j=1}^m [\gcd(i,j) \in prime] \] 有\(T\)组询问\((T \ ...

  6. Java If ... Else

    章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...

  7. Easy Climb UVA - 12170 滚动dp +离散化+ 单调队列优化

    E.Easy Climb Somewhere in the neighborhood we have a very nice mountain that gives a splendid view o ...

  8. 小程序 scroll-view 中文字不换行问题

    问题描述:在scroll-view 中scroll-x="true"时控制文字超出显示省略号,要求如图: 但实际中会出现如文字不换行或样式错乱的问题. 横向滚动的实现如下: 超过两 ...

  9. POJ 2785:4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 18221   Accep ...

  10. tools.eclipse.内存配置

    环境:jdk1.7+eclipse luna 选择:Run ->Run Configurations, 在弹出框右侧中选择Arguments, 在VM arguments最后加入 -Xms256 ...