MobileNets: Open-Source Models for Efficient On-Device Vision
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
(Cross-posted on the Google Open Source Blog)
Deep learning has fueled tremendous progress in the field of computer
vision in recent years, with neural networks repeatedly pushing the frontier of visual recognition technology.
While many of those technologies such as object, landmark, logo and
text recognition are provided for internet-connected devices through the
Cloud Vision API, we
believe that the ever-increasing computational power of mobile devices
can enable the delivery of these technologies into the hands of our
users, anytime, anywhere, regardless of internet connection. However,
visual recognition for on device and embedded applications poses many
challenges — models must run quickly with high accuracy in a
resource-constrained environment making use of limited computation,
power and space.
Today we are pleased to announce the release of MobileNets, a family of mobile-first computer vision models for TensorFlow,
designed to effectively maximize accuracy while being mindful of the
restricted resources for an on-device or embedded application.
MobileNets are small, low-latency, low-power models parameterized to
meet the resource constraints of a variety of use cases. They can be
built upon for classification, detection, embeddings and segmentation
similar to how other popular large scale models, such as Inception, are used.
Example use cases include detection, fine-grain classification, attributes and geo-localization. |
This release contains the model definition for MobileNets in TensorFlow using TF-Slim, as well as 16 pre-trained ImageNet classification checkpoints for use in mobile projects of all sizes. The models can be run efficiently on mobile devices with TensorFlow Mobile.
Model Checkpoint
|
Million MACs
|
Million Parameters
|
Top-1 Accuracy
|
Top-5 Accuracy
|
569
|
4.24
|
70.7
|
89.5
|
|
418
|
4.24
|
69.3
|
88.9
|
|
291
|
4.24
|
67.2
|
87.5
|
|
186
|
4.24
|
64.1
|
85.3
|
|
317
|
2.59
|
68.4
|
88.2
|
|
233
|
2.59
|
67.4
|
87.3
|
|
162
|
2.59
|
65.2
|
86.1
|
|
104
|
2.59
|
61.8
|
83.6
|
|
150
|
1.34
|
64.0
|
85.4
|
|
110
|
1.34
|
62.1
|
84.0
|
|
77
|
1.34
|
59.9
|
82.5
|
|
49
|
1.34
|
56.2
|
79.6
|
|
41
|
0.47
|
50.6
|
75.0
|
|
34
|
0.47
|
49.0
|
73.6
|
|
21
|
0.47
|
46.0
|
70.7
|
|
14
|
0.47
|
41.3
|
66.2
|
Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk is proportional to the number of parameters. The latency and power usage of the network scales with the number of Multiply-Accumulates (MACs) which measures the number of fused Multiplication and Addition operations. Top-1 and Top-5 accuracies are measured on the ILSVRC dataset. |
We are excited to share MobileNets with the open-source community. Information for getting started can be found at the TensorFlow-Slim Image Classification Library. To learn how to run models on-device please go to TensorFlow Mobile. You can read more about the technical details of MobileNets in our paper, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
Acknowledgements
MobileNets were made possible with the hard work of many engineers and
researchers throughout Google. Specifically we would like to thank:
Core Contributors: Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
Special thanks to: Benoit Jacob, Skirmantas Kligys, George
Papandreou, Liang-Chieh Chen, Derek Chow, Sergio Guadarrama, Jonathan
Huang, Andre Hentz, Pete Warden
MobileNets: Open-Source Models for Efficient On-Device Vision的更多相关文章
- Dynamic device virtualization
A system and method for providing dynamic device virtualization is herein disclosed. According to on ...
- EPPB also support BlackBerry device
各位看倌不是小弟要賣弄英文,實在是外國朋友希望知道上一篇"雲取證"中所用的工具Elcomsoft Phone Password Breaker支援黑莓機否?又要求非要看到截屏才算數 ...
- Vulkan Device Memory
1.通过下面的接口,可以获得显卡支持的所有内存类型: MemoryType的类型如下: 2.引用索引3对内存的描述 我们可以通过调用vkGetPhysicalDeviceMemoryPropertie ...
- Research Guide for Neural Architecture Search
Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbe ...
- 斯坦福CS课程列表
http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...
- Python学习路程day18
Python之路,Day18 - Django适当进阶篇 本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣和效 ...
- 卷积神经网络和CIFAR-10:Yann LeCun专访 Convolutional Nets and CIFAR-10: An Interview with Yann LeCun
Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 3 ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- Python之路,Day15 - Django适当进阶篇
Python之路,Day15 - Django适当进阶篇 本节内容 学员管理系统练习 Django ORM操作进阶 用户认证 Django练习小项目:学员管理系统设计开发 带着项目需求学习是最有趣 ...
随机推荐
- P 1020 月饼
转跳点:
- HDU 5480:Conturbatio 前缀和
Conturbatio Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tota ...
- java向量 vector
Vector 向量 是java.util 包里的一个类,该类继承AbstractList,实现了类似动态数组的功能. 向量和数组相似,都可以保存一组数据,但数组的大小(长度)是固定的,而Vector ...
- java课程之团队开发第一阶段评论
1.没有UI设计,整体的样式感觉不堪入目 2.功能方面实现的并不是很多,还需要继续努力 3.还需要添加一些常用的课表功能,比如说导入课表等
- 代码神器:拒绝重复编码,这款IDEA插件了解一下.....
作者:HeloWxl www.jianshu.com/p/e4192d7c6844 Easycode是idea的一个插件,可以直接对数据的表生成entity.controller.service.da ...
- 使用文件流创建File文件和目录以及其他的一些操作
我们创建文件时可以直接通过File f=new File(path)来创建一个文件对象,然后再通过 f.createNewFile() 就创建出来了一个文件.比如设置 path 为 C:\Users\ ...
- 18 11 27 高级的服务器连接 epoll
---恢复内容开始--- 之前的 http 服务器 都是采用 轮询的方式(就像 厨师挨个问谁饿了好做饭 一样 ) 而 epoll 用着高级的 方式 事件通知 (直接问谁饿了) 同时还和 计 ...
- BZOJ 3170 [Tjoi2013]松鼠聚会
题解:切比雪夫距离转化为曼哈顿距离 枚举源点,横纵坐标互不影响,分开考虑,前缀和优化 横纵分开考虑是一种解题思路 #include<iostream> #include<cstdio ...
- java.lang.SecurityException: Permission denied (missing INTERNET permission?)
ndroid app里试图用HttpUrlConnection获取网络连接,忘记在AndroidManifest清单文件里声明需要用到Internet的权限,运行时报此错误. 解决方法 在Androi ...
- 吴裕雄--天生自然MySQL学习笔记:MySQL 创建数据表
创建MySQL数据表需要以下信息: 表名 表字段名 定义每个表字段 语法 以下为创建MySQL数据表的SQL通用语法: CREATE TABLE table_name (column_name col ...