自编码器是无监督学习领域中一个非常重要的工具。最近由于图神经网络的兴起,图自编码器得到了广泛的关注。笔者最近在做相关的工作,对科研工作中经常遇到的:自编码器(AE),变分自编码器(VAE),图自编码器(GAE)和图变分自编码器(VGAE)进行了总结。如有不对之处,请多多指正。

    另外,我必须要强调的一点是:很多文章在比较中将自编码器和变分自编码器视为一类,我个人认为,这二者的思想完全不同。自编码器的目的不是为了得到latent representation(中间层),而是为了生成新的样本。我自己的实验得出的结论是,变分自编码器和变分图自编码器生成的中间层不能直接用来做下游任务(聚类、分类等),这是一个坑。

自编码器(AE)

    在解释图自编码器之前,首先理解下什么是自编码器。自编码器的思路来源于传统的PCA,其目的可以理解为非线性降维。我们知道在传统的PCA中,学习器学得一个子空间矩阵,将原始数据投影到一个低维子空间,从未达到数据降维的目的。自编码器则是利用神经网络将数据逐层降维,每层神经网络之间得激活函数就起到了将"线性"转化为"非线性"的作用。自编码器的网络结构可以是对称的也可以是非对称的。我们下面以一个简单的四层对称的自编码器为例,全文代码见最后

   (严格的自编码器是只有一个隐藏层,但是我在这里把几种不同的自编码器统称为自编码器,其最大的区别就是隐藏层以及神经元数量的多少,理解一个,其它的都就理解了)

图自编码器(GAE)

    图自编码器和自编码器最大的区别有两点:一是图自编码器在encoder过程中使用了一个(n*n)的卷积核;另一个是图编码器没有数据解码部分,转而代之的是图decoder。

图自编码器可以像自编码器那样用来生成隐向量,也可以用来做链路预测(类似于推荐任务)。

变分自编码器(VAE)



   变分自编码是让中间层Z服从一个分布。这样我们想要生成一个新的样本的时候,就可以直接在特定分布中随机抽取一个样本。

   另外,我初学时遇到的疑惑,就是中间层是怎么符合分布的。我的理解是:

      输入样本:\(\mathbf{X \in \mathcal{R}^{n * d}}\)

      中间层 :\(\mathbf{Z \in \mathcal{R}^{n * m}}\)

   所谓的正态分布是让\(Z\)的每一行\(z_i\)符合正态分布,这样才能随机从正态分布中抽一个新的\(z_i\)出来。但是正是这个原因,我认为\(Z\)不能直接用来处理下游任务(分类、聚类),我自己跑实验确实效果不好。

变分图自编码器(VGAE)

    如果你理解了变分比编码器和图自编码器,那么变分图自编码器你也就能理解了。第一个改动就是在VAE的基础上把encoder过程换成了GCN的卷积过程,另一个改动就是把decoder过程换成了图decoder过程。同样生成的中间层隐向量不能直接应用下游任务。

   数据集和下游任务的代码见: https://github.com/zyx423/GAE-and-VGAE.git

全文代码如下:

class myAE(torch.nn.Module):

    def __init__(self, d_0, d_1, d_2, d_3, d_4):
super(myAE, self).__init__()
// 这里的d0, d_1, d_2, d_3, d_4对应四层神经网络的维度 self.conv1 = torch.nn.Sequential(
torch.nn.Linear(d_0, d_1, bias=False),
torch.nn.ReLU(inplace=True)
) self.conv2 = torch.nn.Sequential(
torch.nn.Linear(d_1, d_2, bias=False),
torch.nn.ReLU(inplace=True)
) self.conv3 = torch.nn.Sequential(
torch.nn.Linear(d_2, d_3, bias=False),
torch.nn.ReLU(inplace=True)
) self.conv4 = torch.nn.Sequential(
torch.nn.Linear(d_3, d_4, bias=False),
torch.nn.Sigmoid()
)
def Encoder(self, H_0):
H_1 = self.conv1(H_0)
H_2 = self.conv2(H_1)
return H_2 def Decoder(self, H_2):
H_3 = self.conv3(H_2)
H_4 = self.conv4(H_3)
return H_4 def forward(self, H_0):
Latent_Representation = self.Encoder(H_0)
Features_Reconstrction = self.Decoder(Latent_Representation)
return Latent_Representation, Features_Reconstrction class myGAE(torch.nn.Module):
def __init__(self, d_0, d_1, d_2):
super(myGAE, self).__init__() self.gconv1 = torch.nn.Sequential(
torch.nn.Linear(d_0, d_1, bias=False),
torch.nn.ReLU(inplace=True)
)
self.gconv1[0].weight.data = get_weight_initial(d_1, d_0) self.gconv2 = torch.nn.Sequential(
torch.nn.Linear(d_1, d_2, bias=False)
)
self.gconv2[0].weight.data = get_weight_initial(d_2, d_1) def Encoder(self, Adjacency_Modified, H_0):
H_1 = self.gconv1(torch.matmul(Adjacency_Modified, H_0))
H_2 = self.gconv2(torch.matmul(Adjacency_Modified, H_1))
return H_2 def Graph_Decoder(self, H_2):
graph_re = Graph_Construction(H_2)
Graph_Reconstruction = graph_re.Middle()
return Graph_Reconstruction def forward(self, Adjacency_Modified, H_0):
Latent_Representation = self.Encoder(Adjacency_Modified, H_0)
Graph_Reconstruction = self.Graph_Decoder(Latent_Representation)
return Graph_Reconstruction, Latent_Representation class myVAE(torch.nn.Module):
def __init__(self, d_0, d_1, d_2, d_3, d_4, bias=False):
super(myVAE, self).__init__() self.conv1 = torch.nn.Sequential\
(
torch.nn.Linear(d_0, d_1, bias= False),
torch.nn.ReLU(inplace=True)
) # VAE有两个encoder,一个用来学均值,一个用来学方差
self.conv2_mean = torch.nn.Sequential(
torch.nn.Linear(d_1, d_2, bias=False) )
self.conv2_std = torch.nn.Sequential(
torch.nn.Linear(d_1, d_2, bias=False)
)
self.conv3 = torch.nn.Sequential(
torch.nn.Linear(d_2, d_3, bias=False),
torch.nn.ReLU(inplace=False)
)
self.conv4 = torch.nn.Sequential(
torch.nn.Linear(d_3, d_4, bias=False),
torch.nn.Sigmoid()
) def Encoder(self, H_0):
H_1 = self.conv1(H_0)
H_2_mean = self.conv2_mean(H_1)
H_2_std = self.conv2_std(H_1)
return H_2_mean, H_2_std def Reparametrization(self, H_2_mean, H_2_std):
# sigma = 0.5*exp(log(sigma^2))= 0.5*exp(log(var))
std = 0.5 * torch.exp(H_2_std)
# N(mu, std^2) = N(0, 1) * std + mu。
# 数理统计中的正态分布方差,刚学过, std是方差。
# torch.randn 生成正态分布
Latent_Representation = torch.randn(std.size()) * std + H_2_mean
return Latent_Representation # 解码隐变量
def Decoder(self, Latent_Representation):
H_3 = self.conv3(Latent_Representation)
Features_Reconstruction = self.conv4(H_3)
return Features_Reconstruction # 计算重构值和隐变量z的分布参数
def forward(self, H_0):
H_2_mean, H_2_std = self.Encoder(H_0)
Latent_Representation = self.Reparametrization(H_2_mean, H_2_std)
Features_Reconstruction = self.Decoder(Latent_Representation)
return Latent_Representation, Features_Reconstruction, H_2_mean, H_2_std class myVGAE(torch.nn.Module):
def __init__(self, d_0, d_1, d_2):
super(myVGAE, self).__init__() self.gconv1 = torch.nn.Sequential(
torch.nn.Linear(d_0, d_1, bias=False),
torch.nn.ReLU(inplace=True)
)
# self.gconv1[0].weight.data = get_weight_initial(d_1, d_0) self.gconv2_mean = torch.nn.Sequential(
torch.nn.Linear(d_1, d_2, bias=False)
)
# self.gconv2_mean[0].weight.data = get_weight_initial(d_2, d_1) self.gconv2_std = torch.nn.Sequential(
torch.nn.Linear(d_1, d_2, bias=False)
)
# self.gconv2_std[0].weight.data = get_weight_initial(d_2, d_1) def Encoder(self, Adjacency_Modified, H_0):
H_1 = self.gconv1(torch.matmul(Adjacency_Modified, H_0))
H_2_mean = self.gconv2_mean(torch.matmul(Adjacency_Modified, H_1))
H_2_std = self.gconv2_std(torch.matmul(Adjacency_Modified, H_1))
return H_2_mean, H_2_std def Reparametrization(self, H_2_mean, H_2_std): # sigma = 0.5*exp(log(sigma^2))= 0.5*exp(log(var))
std = 0.5 * torch.exp(H_2_std)
# N(mu, std^2) = N(0, 1) * std + mu。
# 数理统计中的正态分布方差,刚学过, std是方差。
# torch.randn 生成正态分布
Latent_Representation = torch.randn(std.size()) * std + H_2_mean
return Latent_Representation # 解码隐变量
def Graph_Decoder(self, Latent_Representation):
graph_re = Graph_Construction(Latent_Representation)
Graph_Reconstruction = graph_re.Middle()
return Graph_Reconstruction def forward(self, Adjacency_Modified, H_0):
H_2_mean, H_2_std = self.Encoder(Adjacency_Modified, H_0)
Latent_Representation = self.Reparametrization(H_2_mean, H_2_std)
Graph_Reconstruction = self.Graph_Decoder(Latent_Representation)
return Latent_Representation, Graph_Reconstruction, H_2_mean, H_2_std

变分(图)自编码器不能直接应用于下游任务(GAE, VGAE, AE, VAE and SAE)的更多相关文章

  1. 编码器AE & VAE

    学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)             ...

  2. x264源代码简单分析:编码器主干部分-2

    ===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...

  3. x264源代码简单分析:编码器主干部分-1

    ===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...

  4. 电机AB相编码器测速

    控制任务 检测编码器的脉冲并测速 电路设计 图1 直流电机带减速器和编码器 图2  编码器接线定义 编码器接线定义如下 M1:电机电源接口,绿色的 GND:编码器电源负极输入口,橙色的 C1:编码器A ...

  5. 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

    项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...

  6. Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码 ...

  7. GAN与VAE

    经典算法·GAN与VAE Generative Adversarial Networks 及其变体 生成对抗网络是近几年最为经典的生成模型的代表工作,Goodfellow的经典工作.通过两个神经网络结 ...

  8. 自动编码(AE)器的简单实现

    一.目录 自动编码(AE)器的简单实现 一.目录 二.自动编码器的发展简述 2.1 自动编码器(Auto-Encoders,AE) 2.2 降噪自编码(Denoising Auto-Encoders, ...

  9. 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》

    论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...

随机推荐

  1. SpringBoot+SpringCloud面试题整理

    什么是SpringBoot?1.用来简化spring初始搭建和开发过程使用特定的方式进行配置(properties或者yml文件)2.创建独立的spring引用程序main方法运行3.嵌入Tomcat ...

  2. SSD1306(OLED驱动芯片)指令详解

    基础命令: 1.页地址模式下设置列起始地址低位(Set Lower Column Start Address For Page Addressing Mode)(00h~0Fh) 此指令用于在页地址模 ...

  3. Mac node.js express-generator脚手架安装

    前言 由于本人在学习NodeJs的express框架时,在Mac电脑上安装express遇到了一个深痛的坑点,特写此文来记录.该坑点的解决方案我在国内的度娘没有找到,问别人也没有方案,最后通过goog ...

  4. HDU-6393 Traffic Network in Numazu

    题意:给你一个n边n点的无向连通图,两个操作,操作一改变某个边的权值,操作二查询某两个点之间的路径长度. 题解:随便删掉环上一条边搞一棵树出来,因为两点间距离是两点各自到根的距离之和减去2*lca两点 ...

  5. 28-2 类型转换函数Cast-Convet

    ------------------------类型转换函数------------------------ --cast(表达式 as 数据类型) --convert(数据类型,表达式) ' as ...

  6. python 格式化输出(% VS format)

    提到Python中的格式化输出方法,一般来说有以下两种方式: 1)% 格式说明由%和格式字符组成,如%f,%s,%d,它的作用是将数据按照指定的格式输出.格式说明是由“%”字符开始的. #1.输出字符 ...

  7. Git链接http转ssh

    git remote set-url origin git@gitserver:USERNAME/PROJECT.git

  8. 添加nginx新模块,获取客户真实ip

    当前是客户端登录软件后台获取不到客户的真实ip而是云盾的代理ip 为了获取到真实ip后来发现通过配置nginx的read_ip模块就可以了 获取客户的真实ip使用Nginx的realip模块 当Ngi ...

  9. 【C++】常见易犯错误之数值类型取值溢出与截断(2)

    本节内容紧接上节,解决红色字体遗留问题.本节所有例子运行环境: win10 + VS2015 + X64 + debug 在上节例子中,查看变量 c .d .d+1 的类型. //// Console ...

  10. Beta冲刺——5.24

    这个作业属于哪个课程 软件工程 这个作业要求在哪里 Beta冲刺 这个作业的目标 Beta冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.安排每个人进行为期3天的 ...