题目描述

某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为 \(1m/s\),每个路灯的位置(是一个整数,即距路线起点的距离,单位:\(m\))、功率(\(W\)),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

输入格式

第一行是两个数字\(n\)(表示路灯的总数)和 \(c\)(老张所处位置的路灯号);

接下来 \(n\) 行,每行两个数据,表示第 \(1\) 盏到第 \(n\) 盏路灯的位置和功率。数据保证路灯位置单调递增。

输出格式

一个数据,即最少的功耗(单位:\(J\),\(1J=1W×s\))。

输入输出样例

输入 #1

5 3

2 10

3 20

5 20

6 30

8 10

输出 #1

270

说明/提示

样例解释

此时关灯顺序为 3 4 2 1 5。

数据范围

\(1≤n≤50,1≤c≤n\)

分析

这个题从题目的意思,应该挺容易就能看出来是一个区间\(dp\),因为题意就是一个大爷在一个“区间”里关灯。所以就可以根据区间长度来进行状态转移。首先想到如果大爷关灯从\(i\)到\(j\),当然这并不代表关灯顺序,大爷关灯肯定是走过的路上的灯都关了,因为这肯定比走过不关再回来关要优。而在\(i\)到\(j\)这一段关了灯的区间里,大爷有两种位置情况,一种是在\(i\),也就是左边,另一种就是右边,所以我们的dp数组就可以根据这个来开,也就是\(dp[i][j][0]\)和\(dp[i][j][1]\)分别表示关了i,j之间的灯,然后在最左和最右两种位置的情况,而区间长度肯定是从最短到最长,最短为1,然后依次增加,所以每一次的\(dp[i][j]\)的状态都是从上一个转移下来的,也就是\(dp[i+1][j]\)和$dp[i][j-1],然后分别在左右端点两种,依次进行状态转移。而能耗的增量可以通过时间和区间里能耗的前缀和来进行转移,下边我用一个转移方程来进行一下具体说明:

首先是个转移方程:

\[dp[i][j][0] = min(dp[i+1][j][0]+(pos[i+1] - pos[i])\times sum[i+1][j],dp[i+1][j][1]+(pos[j]-pos[i])\times sum[i+1][j])
\]

在这里,\(pos\)代表位置(这里的位置说的是下标,不是距离,但是pos数组存的是距离,用来计算时间)\(sum\)数组代表的是从\(i\)到\(j\)之外的能耗,\(sum\)需要一个预处理,下边单独说,这里先介绍含义,方便理解。这个状态转移方程的意思也就是\(i\)到\(j\)区间内,大爷在左边的时候,通过不同的上个状态的位置来进行转移,值得一提的是,因为此时大爷在左边界,所以肯定是由\(dp[i+1][j]\)转移而来,假如是由\(dp[i][j-1]\)转移来的话,应当在右侧,这就是下一个状态转移方程。继续看这个方程,从\(dp[i+1][j]\)转移而来,所以也有两种,左右边界各一种,在左边界时,他所需的时间就是\(pos[i+1] - pos[i]\),右边界时就是\(pos[j]-pos[i]\),而花费的功率就是sum乘以时间,分别为:\((pos[i+1] - pos[i])\times sum[i+1][j]\)和\((pos[j]-pos[i])\times sum[i+1][j]\),看到这里可能有人会有疑惑,从\(i\)到\(j\)之外的能耗为啥是\(i+1\)到\(j\)呢,现在我们来说一下\(sum\)的得出:我们先用\(val\)数组当做前缀和,区间\(i\)到\(j\)的能耗就是\(val[j]-val[i-1]\),\(sum[i][j]\)就是用\(val[n]\)减去上边的能耗,具体见代码。现在大概就都解释清楚了。然后就是两个关键的状态转移方程:

\[dp[i][j][0] = min(dp[i+1][j][0]+(pos[i+1] - pos[i])*sum[i+1][j],dp[i+1][j][1]+(pos[j]-pos[i])*sum[i+1][j]) \\
dp[i][j][1] = min(dp[i][j-1][1]+(pos[j]-pos[j-1])*sum[i][j-1],dp[i][j-1][0]+(pos[j]-pos[i])*sum[i][j-1])\]

就这样了,然后看一下代码加深一下理解⑧

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 55;
int pos[maxn];
int sum[maxn][maxn];
int dp[maxn][maxn][3];
int v[maxn];
int n,c;
int main(){
cin>>n>>c;
for(int i=1;i<=n;++i){
int w;
cin>>pos[i]>>w;
v[i]=v[i-1]+w;
}
memset(dp,0x3f,sizeof(dp));
dp[c][c][0] = dp[c][c][1] = 0;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
sum[i][j] = v[n] - (v[j] - v[i-1]);
}
}
for(int j = c;j<=n;++j){
for(int i=j-1;i>=1;--i){
dp[i][j][0] = min(dp[i+1][j][0]+(pos[i+1] - pos[i])*sum[i+1][j],dp[i+1][j][1]+(pos[j]-pos[i])*sum[i+1][j]);
dp[i][j][1] = min(dp[i][j-1][1]+(pos[j]-pos[j-1])*sum[i][j-1],dp[i][j-1][0]+(pos[j]-pos[i])*sum[i][j-1]);
}
}
int ans = min(dp[1][n][0],dp[1][n][1]);
cout<<ans<<endl;
}

洛谷P1220关路灯【区间dp】的更多相关文章

  1. 洛谷 P1220 关路灯 区间DP

    题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...

  2. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  3. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  4. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  5. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  6. 洛谷P1220 关路灯

    洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...

  7. P1220 关路灯——区间dp

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...

  8. 洛谷——P1220 关路灯

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...

  9. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  10. 洛谷P1220 关路灯【区间dp】

    题目:https://www.luogu.org/problemnew/show/P1220 题意:给定n盏灯的位置和功率,初始时站在第c盏处. 关灯不需要时间,走的速度是1单位/秒.问把所有的灯关掉 ...

随机推荐

  1. TCP / IP 精彩回顾-必看

    TCP/IP 协议出现的原因是互联网世界各个主机作为一个个独立的个体,如何制定统一的规则让他们互相通信是达成万物互联的纽带.基于此,设定了 TCP/IP 协议来规范网络访问行为.TCP/IP 并不是一 ...

  2. Java实现 LeetCode 59 螺旋矩阵 II

    59. 螺旋矩阵 II 给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 示例: 输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ...

  3. Android中如何使用对话框(单选对话框和多选对话框)

    在主XML中声明两个Button,声明Id package com.example.myapplication; import androidx.appcompat.app.AlertDialog; ...

  4. java实现硬币方案

    标题:硬币方案 有50枚硬币,可能包括4种类型:1元,5角,1角,5分. 已知总价值为20元.求各种硬币的数量. 比如:2,34,6,8 就是一种答案. 而 2,33,15,0 是另一个可能的答案,显 ...

  5. Java实现 蓝桥杯 历届试题 翻硬币

    问题描述 小明正在玩一个"翻硬币"的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如 ...

  6. 温故知新-多线程-深入刨析volatile关键词

    文章目录 摘要 volatile的作用 volatile如何解决线程可见? CPU Cache CPU Cache & 主内存 缓存一致性协议 volatile如何解决指令重排序? volat ...

  7. PAT 1039 Course List for Student (25分) 使用map<string, vector<int>>

    题目 Zhejiang University has 40000 students and provides 2500 courses. Now given the student name list ...

  8. 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(11.0)- FlexSPI NOR启动时间(RT1170)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1170 FlexSPI NOR启动时间. 痞子衡刚刚拿到i.MXRT1170 B0版本的芯片,迫不及待地在上面跑了 ...

  9. (七)logback 异步输出日志

    <!-- 异步输出 --> <appender name="ASYNC-INFO" class="ch.qos.logback.classic.Asyn ...

  10. Arduino连接LCD1602显示屏

    简介 LCD1602是一种工业字符型液晶,能够同时显示16x02即32个字符.LCD1602液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,即可以显示出图形.[百度百科] 引脚说明 ...