编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归
知识点
- scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析。
- 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法。 我们将scikit-learn的线性回归算法应用于编程作业1.1的数据,并看看它的表现。
- 一般来说,只要觉得数据有线性关系,LinearRegression类是我们的首选。如果发现拟合或者预测的不好,再考虑用其他的线性回归库。如果是学习线性回归,推荐先从这个类开始第一步的研究。
- LinearRegression 的使用非常简单,主要分为两步:
- 使用 fit(x_train,y_train) 对训练集x, y进行训练。
- 使用 predict(x_test) 训练得到的估计器对输入为 x_test 的集合进行预测。( (x_test) 可以是测试集,也可以是需要预测的数据)
过程
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 导入数据
path = 'D:\BaiduNetdiskDownload\data_sets\ex1data1.txt'
# pd.read_csv 将 TXT 文件读入并转化为数据框形式
# names 添加列名
# header 用指定的行来作为标题(表头),若原来无标题则设为 none
# 用到 Pandas 里面的 head( ) 函数读取数据(只能读取前五行)
data = pd.read_csv(path,header=None,names=['Population','Profit'])
data.head()
# 在训练集中插入一列1(其实是x0=1),方便我们可以使用向量化的解决方案来计算代价和梯度。
data.insert(0, 'Ones', 1)
# set X(training set), y(target variable)
# 设置训练集X,和目标变量y的值
cols = data.shape[1] # 获取列数
X = data.iloc[:,0:cols-1] # 输入向量X为前cols-1列
y = data.iloc[:,cols-1:cols] # 目标变量y为最后一列
# 代价函数是应该是 numpy 矩阵,所以我们需要转换X和Y,然后才能使用它们。 我们还需要初始化 theta 。
X = np.array(X.values)
y = np.array(y.values)
theta = np.array([0,0])
核心代码:
from sklearn import linear_model
# 需要导入LinearRegression类,并将之实例化,并采用fit()方法已验证这些训练数据。
model = linear_model.LinearRegression()
model.fit(X, y) # fit(X, y)对训练集X, y进行训练
scikit-learn model的预测表现:
x = np.array(X[:, 1])
f = model.predict(X).flatten() # .flatten() 默认按行的方向降维
fig, ax = plt.subplots(figsize=(8,5))
ax.plot(x, f, 'r', label='Prediction')
ax.scatter(data.Population, data.Profit, label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()
参考资料
python_sklearn机器学习算法系列之LinearRegression线性回归
编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归的更多相关文章
- sklearn机器学习算法--线性模型
线性模型 用于回归的线性模型 线性回归(普通最小二乘法) 岭回归 lasso 用于分类的线性模型 用于多分类的线性模型 1.线性回归 LinearRegression,模型简单,不同调节参数 #2.导 ...
- sklearn机器学习算法--K近邻
K近邻 构建模型只需要保存训练数据集即可.想要对新数据点做出预测,算法会在训练数据集中找到最近的数据点,也就是它的“最近邻”. 1.K近邻分类 #第三步导入K近邻模型并实例化KN对象 from skl ...
- 机器学习作业(五)机器学习算法的选择与优化——Matlab实现
题目下载[传送门] 第1步:读取数据文件,并可视化: % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in y ...
- 机器学习算法系列:FM分解机
在线性回归中,是假设每个特征之间独立的,也即是线性回归模型是无法捕获特征之间的关系.为了捕捉特征之间的关系,便有了FM分解机的出现了.FM分解机是在线性回归的基础上加上了交叉特征,通过学习交叉特征的权 ...
- 如何用Python实现常见机器学习算法-1
最近在GitHub上学习了有关python实现常见机器学习算法 目录 一.线性回归 1.代价函数 2.梯度下降算法 3.均值归一化 4.最终运行结果 5.使用scikit-learn库中的线性模型实现 ...
- java数据结构和算法编程作业系列篇-数组
/** * 编程作业 2.1 向highArray.java程序(清单2.3)的HighArray类添加一个名为getMax()的方法,它返回 数组中最大关键字的值,当数组为空时返回-1.向main( ...
- Andrew Ng机器学习编程作业:Logistic Regression
编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大 ...
- Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结
Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.htm ...
- stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...
随机推荐
- cf 762C. Two strings
因为要删去1个串(读错题),所以就直接二分搞就好了. 需要预处理出2个分别从头到尾,或从尾到头需要多长a串的数组,然后二分删去多长就好了. #include<bits/stdc++.h> ...
- php.laravel.log
看代码,原厂代码写的比较清楚,版本(laravel5.7) 简单使用,方便调试,详细使用需要详细查看文档. 在config/app.php 添加 'log' => env('APP_LOG', ...
- 一百零一、SAP中ALV事件之十四,让ALV表格自动排序
如果我们需要对下图的凭证日期和物料进行排序,需要怎么做呢 一.我们来到ALV的定义 二.我们查看IT_SORT的定义,双击点进去 三.查看SLIS_T_SORTINFO_ALV定义 四.代码如下,定义 ...
- 067-PHP使用匿名函数
<?php $func=function ($x,$y){ //匿名函数与变量绑定 return $x+$y; }; echo '5+6='.$func(5,6); //使用匿名函数 echo ...
- postgrepSQL数据库创建二级分区表
数据库版本:version 10 以非继承的形式创建分区表,一级分区是城市,二级分区是天:指定分区有两种形式,RANGE和LIST,如果使用RANGE在创建分区语句中是通过FOR VALUES FRO ...
- java web 最方便的配置filter方法,filter到底怎么配置?
小白学习的艰辛历程! 我只说最新版本的eclipse自从servelt3.0以后 servelt 和filter 都不用到web.xml中配置,个人对servelt和filter理解不太深入,但是自从 ...
- Codeforces Round #585 (Div. 2) CF1215A~C
CF1215A. Yellow Cards简单的模拟,给定了黄票张数,判断最少和最多有多少人被罚下场. #include <bits/stdc++.h> using namespace s ...
- python EasyUI + Django--整合 CSRF 防护去除
先来张完整图: 关于Django 得CSRF 中间件 防护 GET 是不做CSRF验证得 但POST 默认验证 $.cookie('csrftoken')) "v ...
- django下载
pip install django ==2.0.5 创建目录 1创建目录 2终端下进入目录 3输入django-admin startproject project
- 【pwnable.kr】bof
pwnable从入门到放弃,第三题. Download : http://pwnable.kr/bin/bofDownload : http://pwnable.kr/bin/bof.c Runnin ...