堆满足的条件:1,是一颗完全二叉树。2,大根堆:父节点大于各个孩子节点。每个节点都满足这个道理。小根堆同理。

parent = (i-1)/2    #i为当前节点

left = 2*i+1

right = 2*i + 2

堆可以分为大根堆和小根堆,这里用大根堆的情况来定义操作:
(1)大根堆调整(max_heapify):
将堆的末端子节点作调整,使得子节点永远小于父节点。这是核心步骤,在建堆和堆排序都会用到。
比较i的根节点和与其所对应i的孩子节点的值,当i根节点的值比左孩子节点的值要小的时候,就把i根节点和左孩子节点所对应的值交换,同理,就把i根节点和右孩子节点所对应的值交换。
然后再调用堆调整这个过程,可见这是一个递归的过程。

def max_heapify(heap,heapSize,root): # 调整列表中的元素并保证以root为根的堆是一个大根堆
'''
给定某个节点的下标root,这个节点的父节点、左子节点、右子节点的下标都可以被计算出来。
父节点:(root-1)//2
左子节点:2*root + 1
右子节点:2*root + 2 即:左子节点 + 1
'''
left = 2*root + 1
right = left + 1
larger = root
if left < heapSize and heap[larger] < heap[left]:
larger = left
if right < heapSize and heap[larger] < heap[right]:
larger = right
if larger != root: # 如果做了堆调整则larger的值等于左节点或者右节点的值,这个时候做堆调整操作
heap[larger], heap[root] = heap[root], heap[larger]
# 递归的对子树做调整
max_heapify(heap, heapSize, larger)

(2)建立大根堆(build_max_heap):
将堆中所有的数据重新排序。建堆的过程其实就是不断做大根堆调整的过程,从(heapSize -2)//2处开始调整,一直调整到第一个根节点。

def build_max_heap(heap): # 构造一个堆,将堆中所有数据重新排序
heapSize = len(heap)
for i in range((heapSize -2)//2,-1,-1): # 自底向上建堆
max_heapify(heap, heapSize, i)

(3)堆排序(heap_sort):
将根节点取出与最后一位做对调,并做最大堆调整的递归运算。堆排序是利用建堆和堆调整来进行的。
首先建堆,然后将堆的根节点选出与最后一个节点进行交换,然后将前面len(heap)-1个节点继续做堆调整,直到将所有的节点取出,对于有n个元素的一维数组我们只需要做n-1次操作。

import random

def heap_sort(heap): # 将根节点取出与最后一位做对调,对前面len-1个节点继续进行堆调整过程。
build_max_heap(heap)
# 调整后列表的第一个元素就是这个列表中最大的元素,将其与最后一个元素交换,然后将剩余的列表再递归的调整为最大堆
for i in range(len(heap)-1, -1, -1):
heap[0], heap[i] = heap[i], heap[0]
max_heapify(heap, i, 0)

# 测试
if __name__ == '__main__':
a = [30, 50, 57, 77, 62, 78, 94, 80, 84]
print(a)
heap_sort(a)
print(a)
b = [random.randint(1,1000) for i in range(1000)]
print(b)
heap_sort(b)
print(b)

堆排序算法以及python实现的更多相关文章

  1. 八大排序算法的 Python 实现

    转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...

  2. 常用排序算法的python实现和性能分析

    常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...

  3. Python3标准库:heapq堆排序算法

    1. heapq堆排序算法 堆(heap)是一个树形数据结构,其中子节点与父节点有一种有序关系.二叉堆(binary heap)可以使用一个有组织的列表或数组表示,其中元素N的子元素位于2*N+1和2 ...

  4. 堆排序算法 java 实现

    堆排序算法 java 实现 白话经典算法系列之七 堆与堆排序 Java排序算法(三):堆排序 算法概念 堆排序(HeapSort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特 ...

  5. 必须知道的八大种排序算法【java实现】(三) 归并排序算法、堆排序算法详解

    一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并 ...

  6. 数据关联分析 association analysis (Aprior算法,python代码)

    1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...

  7. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  8. 机器学习算法与Python实践之(三)支持向量机(SVM)进阶

    机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...

  9. 机器学习算法与Python实践之(二)支持向量机(SVM)初级

    机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...

随机推荐

  1. Vulkan 之 Debugging

    1.可以用validation layers 进行验证: 2.Snapdragon Profiler 使用说明

  2. Django ORM中常用的字段类型以及参数配置

    一.数值型 AutoField对应int(11).自增主键,Django Model默认提供,可以被重写. BooleanField对应tinyint(1).布尔类型字段,一般用于记录状态标记. De ...

  3. 《新标准C++程序设计》3.6-3.7(C++学习笔记9)

    一.成员对象和封闭类 (1)定义 一个类的成员变量如果是另一个类的对象,就称之为“成员对象”. 包含成员对象的类叫封闭类. (2)封闭类构造函数的初始化列表 在构造函数中添加初始化列表的写法: 类名: ...

  4. 安装与配置windbg的symbol(符号)

    http://msdn.microsoft.com/en-us/windows/hardware/gg463028.aspx  windows symbols下载地址 本篇是新手自己写的一点心得.建议 ...

  5. TypeScript 文件引入 Html (ts import html webpack)

    我们的目标是把html引入ts文件,webpack打包时就能把html打进js文件,减少文件加载啦 1 安装 text-loader npm install text-loader --save-de ...

  6. IntelliJ IDEA ULTIMATE 2019.3 破解注册详细教程【亲测有效,持续更新~】

    ​ 申明:本教程 IntelliJ IDEA 破解补丁.激活码均收集于网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除. 注意 本教程适用于 IntelliJ IDEA 所有版本,请放心食用 ...

  7. Linux / MacOS 下Redis 安装、配置和连接

    下载 下载redis压缩包 最新的为 5.0.4 地址 http://download.redis.io/releases/redis-5.0.4.tar.gz 安装 1 解压 切换工作目录到redi ...

  8. Python学习——enumerate

    enumerate(seq, start) seq -- 可遍历的序列      start -- 下标起始位置 seq = [11,22,33,44,55] for i in seq: print( ...

  9. UVA 11997 The K smallest Sums

    给出K*K的矩阵,每一行取一个数,构成K个数的和,总共有 k^k种可能,从中取出前k个最小的. 一开始犯了错,因为只要对每行排序,最小的必定是第一列的和,然后我当时就想着,逐步推进,每次将某行的那个数 ...

  10. qt 程序发布打包

    1. 首先把 release 版本的 exe 复制到其他文件夹,比如 Desktop\test 2. 使用开始菜单中 qt 里面的控制台窗口,使用 cd 命令打开到 Desktop\test 位置,然 ...