有的DP题,某一部分的状态只有两种,选或不选。

开数组记录,代价太大,转移不方便。

状态压缩意为,用 “0/1“ 表示 “选/不选“ 。

把状态表示为二进制整数。

There are 10 kinds of people in the world, who knows binary and who doesn't.

用位运算判断条件并转移状态。

hdu 6149 Valley Numer II

题目传送门

用f[i][j]表示选到前i个点,状态为j的答案。

枚举其他两个高点。

转移之前判断之前是否用过,以及高低点之间是否有连边。

所以用邻接矩阵表示连边比较方便。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int t;
int n,m,k;
int c[][];
int h[];
int v[];
int f[][(<<)+];
int ans; int main()
{
scanf("%d",&t);
while(t--)
{
memset(f,,sizeof(f));
memset(c,,sizeof(c));
memset(h,,sizeof(h));
memset(v,,sizeof(v));
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=m;i++)
{
int q,w;
scanf("%d%d",&q,&w);
c[q][w]=;
c[w][q]=;
}
for(int i=;i<k;i++)
{
scanf("%d",&h[i]);
v[h[i]]=;
}
int st=(<<k);
ans=;
for(int i=;i<=n;i++)
{
for(int j=;j<st;j++)f[i][j]=f[i-][j];
if(v[i])continue;
for(int j=;j<st;j++)
{
for(int q1=;q1<k;q1++)
{
if(j&(<<q1))continue;
if(!c[i][h[q1]])continue;
for(int q2=;q2<q1;q2++)
{
if(j&(<<q2))continue;
if(!c[i][h[q2]])continue;
f[i][(j|(<<q1))|(<<q2)]=max(f[i][(j|(<<q1))|(<<q2)],f[i-][j]+);
}
}
}
}
for(int j=;j<st;j++)ans=max(ans,f[n][j]);
printf("%d\n",ans);
}
return ;
}

hdu 6149 Valley Numer II

CodeForces 895C Square Subsets

题目传送门

一道数学思想浓重的状压DP。

因为1~70只有19个质数(用pr[]储存每个质数),先预处理出每个数的质因子组成c。

c[i]的第k位表示i这个数含有几个pr[k]因子。含有奇数个,那一位就是1,,否则为零。

f[i][j]表示选到第i个数,此时所有选的数的积的质因子组成为j的时候的方案数。

那个“组成”与之前预处理的表示方法类似,每一个二进制位代表一个质因子的情况,0为偶数个,1为奇数个。

读入的时候记录每个数被读进来的次数。

如果读入的数据中含有x这个数,就对x进行一次计算。

具体来说,x可以选奇数个也可以选偶数个。

偶数个的情况状态不变。奇数个的情况,状态异或上x这个数的组成c[x]。

两个加一起,乘上方案数,取个模即可。

最后因为要求是平方数,所以所有质因子都有偶数个,状态为零。

输出f[nw][0]。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
#define ll long long
using namespace std; int n;
int h[];
int c[];
int pr[]={,,,,,,,,,,,,,,,,,,,};
ll f[][<<];
ll pow[];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int t;
scanf("%d",&t);
h[t]++;
}
for(int i=;i<=;i++)
{
int t=i;
int p=;
while(t>)
{
while(t%pr[p]==)
{
t/=pr[p];
c[i]^=(<<p);
}
p++;
}
}
pow[]=;
for(int i=;i<=n;i++)pow[i]=(pow[i-]<<)%mod;
f[][]=;
int nw=;
for(int i=;i<=;i++)
{
if(!h[i])continue;
nw^=;
for(int j=;j<(<<);j++)
{
f[nw][j]=(f[nw^][j^c[i]]+f[nw^][j])%mod*pow[h[i]-]%mod;
}
}
printf("%d",f[nw][]-);
return ;
}

CodeForces 895C Square Subsets

CodeForces 482C Game with Strings

题目传送门

一道期望+状压DP......

摧残大脑的推导与状态转移。

强荐zhx大佬的题解,写的非常非常明白。zhx大佬的题解传送门

作为蒟蒻我就只能大致解释解释代码了QwQ

f[i]代表问了状态为i的问题时,距离确定字符串(终点结果)的期望次数。

显然,f[一个能确定字符串的问法]=0。

接下来的难点在于如何判断每种问法不能确定哪些字符串。

设dbt[i]代表问法为i时,不能区分的字符串有哪些。

用二进制数表示,每一位代表一个字符串,1代表不能确定,0反之。

num[i]代表问法为i时,不能区分的串的个数,也就是dbt[i]中1的个数。

接下来玄学公式和位运算转移状态,zhx大佬的题解里写的很详细,本蒟蒻在此不做赘述。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std; int n,m;
char s[][];
ll dbt[<<];
int num[<<];
double f[<<]; int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%s",s[i]);
}
if(n==){printf("0.000000000");return ;}
m=strlen(s[]);
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
ll st=;
for(int k=;k<m;k++)
{
if(s[i][k]==s[j][k])st|=(1ll<<k);
}
dbt[st]|=(1ll<<i);
dbt[st]|=(1ll<<j);
}
}
for(int i=(<<m)-;i>=;i--)
{
for(int j=;j<m;j++)
{
if(i&(<<j))dbt[i^(<<j)]|=dbt[i];
}
}
for(int i=;i<(<<m);i++)
{
for(int j=;j<n;j++)
{
if(dbt[i]&(1ll<<j))num[i]++;
}
}
f[(<<m)-]=0.00;
for(int i=(<<m)-;i>=;i--)
{
if(!num[i]){f[i]=0.00;continue;}
int tot=m;
for(int j=;j<m;j++)
{
if(i&(<<j))tot--;
}
for(int j=;j<m;j++)
{
if(i&(<<j))continue;
f[i]+=f[i|(<<j)]*1.0/(double)(tot)*(double)(num[i|(<<j)])/(double)(num[i]);
}
f[i]+=1.00;
}
printf("%.9lf",f[]);
return ;
}

CodeForces 482C Game with Strings

hdu 6125 Free from square

题目传送门

由于对于一个合法的答案,sqrt(500)后的素数最多只会用到一个,所以只对前8个素数状压后01背包。

f(S, k)表示素数状态为S时由k个自然数组成的方法有几种。

再对后面的素数分别01背包。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
#define ll long long
using namespace std; int t,n,K;
int num[<<];
bool pr[];
ll f[<<][];
ll ans; int main()
{
num[]=;
int k=;
for(int i=;i<;i++)
{
if(!pr[i])
{
if(k<)num[<<k]=i,k++;
for(int j=i<<;j<;j+=i)pr[j]=;
}
}
for(int i=;i<(<<);i++)
{
int j=(i-)&i;
num[i]=num[j]*num[i^j];
if(num[i]>)num[i]=;
}
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&K);
memset(f,,sizeof(f));
f[][]=;
for(int i=;i<(<<);i++)
{
if(num[i]<=n)
{
int ss =((<<)-)^i;
for(int k=K;k>=;k--)
for(int j=ss;;j=(j-)&ss)
{
f[i|j][k]=(f[i|j][k]+f[j][k-])%mod;
if(j==)break;
}
}
}
for(int i=;i<=n;i++)
{
if(pr[i])continue;
for(int k=K;k>;k--)
{
for(int j=;j<(<<);j++)
{
if(num[j]*i<=n)
{
int ss=((<<)-)^j;
for(int s=ss;;s=(s-)&ss)
{
f[j|s][k]=(f[s][k-]+f[j|s][k])%mod;
if(s==)break;
}
}
}
}
}
ans=;
for(int i=;i<(<<);i++)
for(int k=K;k>=;k--)
ans=(ans+f[i][k])%mod;
printf("%lld\n",ans);
}
return ;
}

hdu 6125 Free from square

CodeForces 449D Jzzhu and Numbers

题目传送门

传说中的官方题解:

(如果图看起来长宽比不对,查看原图即可)

想法不是很简单。

脑洞大,真的想不出来。

看了题解瞎打了一会,cf测,过不了test5。

盯着code看了半个小时,发现是a数组开小了,少打了个0。

话说a数组本来也没什么用是吧。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define mod 1000000007
using namespace std; int n;
int a[];
int f[<<][]; ll ksm(int B,int p)
{
ll ret=;
ll b=B;
while(p)
{
if(p&)ret=(ret*b)%mod;
b=(b*b)%mod;
p>>=;
}
return ret;
} int cnt(int x)
{
int ret=;
while(x)x-=(x&(-x)),ret++;
return (ret&)?-:;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),f[a[i]][]++;
for(int i=;i<=;i++)
{
for(int j=;j<(<<);j++)
{
if(&(j>>(i-)))f[j][i]=f[j][i-];
else f[j][i]=f[j][i-]+f[j+(<<(i-))][i-];
}
}
ll ans=;
for(int i=;i<(<<);i++)
{
ll tmp=((ksm(,f[i][])-)*cnt(i)%mod+mod)%mod;
ans=(ans+tmp+mod)%mod;
}
printf("%I64d",ans);
return ;
}

CodeForces 449D Jzzhu and Numbers

hdu 5713 K个联通块

题目传送门

跟前面某些题相比还是比较友善的。

状态不是很难想,转移也是显然,就是中间的步骤比较多,倒起来有些复杂。

首先算出num[i]表示选点为i状态时,i中这些点相互连边的方案数。

具体做法是找出lowbit代表的那个点,跟前面的点一一计算累加到答案上。

再算出f[i][p]代表所选点集为i时,构成p个联通块的方案数。

第一步要算出f[i][1]。

利用容斥原理,用所有的方法减去不合法的方法。

再利用f[i][1]算出f[i][2...k]。

最后的答案为f[所有点都选((1<<n)-1)][k]。

注意取模。

模数很奇葩。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define mod 1000000009
using namespace std; int t,n,m,k;
int e[][],num[<<];
ll f[<<][]; int count(int nw,int p)
{
int ret=;
for(int i=;i<=n;i++)
{
if((<<(i-))!=p)continue;
p=i;
break;
}
for(int i=;i<=n;i++)
{
if(nw&(<<(i-)))ret+=e[i][p];
}
return ret;
} int main()
{
scanf("%d",&t);
for(int cs=;cs<=t;cs++)
{
memset(e,,sizeof(e));
memset(num,,sizeof(num));
memset(f,,sizeof(f));
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=m;i++)
{
int v1,v2;
scanf("%d%d",&v1,&v2);
e[v1][v2]=e[v2][v1]=;
}
for(int i=;i<(<<n);i++)
{
int lb=i&(-i);
num[i]=num[i^lb]+count(i,lb);
}
for(int i=;i<(<<n);i++)
{
int lb=i&(-i);
ll no=;
for(int j=i^lb;j;j=((j-)&(i^lb)))
{
no=(no+f[i^j][]*1ll%mod*(1ll<<num[j])%mod)%mod;
}
f[i][]=(1ll*(1ll<<num[i])%mod-no)%mod;
}
for(int i=;i<(<<n);i++)
{
for(int j=;j<=k;j++)
{
int lb=i&(-i);
for(int h=i^lb;h;h=((h-)&(i^lb)))
{
f[i][j]=(f[i][j]+f[h][j-]*f[i^h][]%mod)%mod;
}
}
}
printf("Case #%d:\n%lld\n",cs,(f[(<<n)-][k]%mod+mod)%mod);
}
return ;
}

hdu 5713 K个联通块

状压DP小拼盘的更多相关文章

  1. bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)

    数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...

  2. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  3. ZOJ3802 Easy 2048 Again (状压DP)

    ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  4. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  5. 【62测试】【状压dp】【dfs序】【线段树】

    第一题: 给出一个长度不超过100只包含'B'和'R'的字符串,将其无限重复下去. 比如,BBRB则会形成 BBRBBBRBBBRB 现在给出一个区间[l,r]询问该区间内有多少个字符'B'(区间下标 ...

  6. 2014 Super Training #1 B Fix 状压DP

    原题: HDU 3362 http://acm.hdu.edu.cn/showproblem.php?pid=3362 开始准备贪心搞,结果发现太难了,一直都没做出来.后来才知道要用状压DP. 题意: ...

  7. HITOJ 2662 Pieces Assignment(状压DP)

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  8. Codeforces Gym 100015F Fighting for Triangles 状压DP

    Fighting for Triangles 题目连接: http://codeforces.com/gym/100015/attachments Description Andy and Ralph ...

  9. hdu 4739 状压DP

    这里有状态压缩DP的好博文 题目:题目比较神,自己看题目吧 分析: 大概有两种思路: 1.dfs,判断正方形的话可以通过枚举对角线,大概每次减少4个三角形,加上一些小剪枝的话可以过. 2.状压DP,先 ...

随机推荐

  1. SDL实践:产品经理如何驱动产品安全建设

    一.序言 本文从产品经理的角度出发,对产品经理的安全职责.产品驱动安全的内涵.工作内容.工作方法.所需安全资源.以及产品经理的安全工作量进行了分析.希望所有产品经理在没有心理负担的情况下,有目标.有方 ...

  2. 使用图数据库 Nebula Graph 数据导入快速体验知识图谱

    本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/Knowl ...

  3. nouveau :failed to create kernel chanel,-22

    一:錯誤描述:今天在重啓 Ubuntu 的過程中,出現下圖的 grub 選項,系統重啓/開機之後出現以下畫面,然後選擇 Ubuntu 之後黑屏,提示錯誤:nouveau :failed to crea ...

  4. Java之解决线程安全问题的方式三:Lock锁

    import java.util.concurrent.locks.ReentrantLock; /** * 解决线程安全问题的方式三:Lock锁 --- JDK5.0新增 * * 1. 面试题:sy ...

  5. Codeforces 1294B - Collecting Packages

    题目大意: 机器人从(0,0)开始,他只能往上'U'或者往右'R'走 坐标系中有着很多包裹,分别在一些点上 机器人需要走过去把这些包裹全部收集起来 问能不能做到 如果能,再输出移动方式,相同移动方式输 ...

  6. 洛谷 P5018 对称二叉树

    题目传送门 解题思路: 先计算每个点的子树有多少节点,然后判断每个子树是不是对称的,更新答案. AC代码: #include<iostream> #include<cstdio> ...

  7. js等于符号的详解

    JavaScript == 与 === 区别 1.对于 string.number 等基础类型,== 和 === 是有区别的 a)不同类型间比较,== 之比较 "转化成同一类型后的值&quo ...

  8. 题解-------CF235B Let's Play Osu!

    传送门 题目大意 求出总得分的期望值. 思路 还没有学习数学期望的小朋友赶紧去学一下数学期望,这里只提供公式: $E\left ( x \right )=\sum_{k=1}^{\infty }x_{ ...

  9. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:windows操作系统安装指定版本的tensorflow

    pip install tensorflow==1.14.0

  10. LeetCode No.157,158,159

    No.157 Read 用 Read4 读取 N 个字符 题目 给你一个文件,并且该文件只能通过给定的 read4 方法来读取,请实现一个方法使其能够读取 n 个字符. read4 方法: API r ...