「JSOI2014」支线剧情2
「JSOI2014」支线剧情2
传送门
不难发现原图是一个以 \(1\) 为根的有根树,所以我们考虑树形 \(\text{DP}\)。
设 \(f_i\) 表示暴力地走完以 \(i\) 为根的子树的最小代价,那么 \(f_i\) 的计算就很显然了:
\]
\(s_i\) 表示以 \(i\) 为根的子树的叶子数。
我们再设一个 \(dp_i\) 表示在可以存档读档的条件下走完以 \(i\) 为根的子树的最小代价。
那么我们的转移就是枚举 \(i\) 的一个儿子用来存档或者不存档,然后计算 \(dp_i\) 即可。
参考代码:
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T min(T a, T b) { return a < b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
typedef long long LL;
const int _ = 1e6 + 5;
int tot, head[_]; struct Edge { int v, w, nxt; } edge[_ << 1];
inline void Add_edge(int u, int v, int w) { edge[++tot] = (Edge) { v, w, head[u] }, head[u] = tot; }
int n, num[_]; LL f[_], dp[_];
inline void dfs(int u, LL dis) {
if (head[u] == 0) { num[u] = 1; return ; }
LL sum = 0;
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
dfs(v, dis + w), num[u] += num[v], f[u] += f[v] + 1ll * w * num[v];
sum += min(f[v] + 1ll * w * num[v], dp[v] + dis + w);
}
dp[u] = f[u];
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
dp[u] = min(dp[u], sum - min(f[v] + 1ll * w * num[v], dp[v] + dis + w) + dp[v] + w);
}
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
for (rg int k, x, y, i = 1; i <= n; ++i) {
read(k);
while (k--) read(x), read(y), Add_edge(i, x, y);
}
dfs(1, 0);
printf("%lld\n", dp[1]);
return 0;
}
「JSOI2014」支线剧情2的更多相关文章
- 「AHOI2014/JSOI2014」支线剧情
「AHOI2014/JSOI2014」支线剧情 传送门 上下界网络流. 以 \(1\) 号节点为源点 \(s\) ,新建一个汇点 \(t\),如果 \(u\) 能到 \(v\),那么连边 \(u \t ...
- 「JSOI2014」矩形并
「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来 ...
- 「JSOI2014」打兔子
「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又 ...
- 「JSOI2014」电信网络
「JSOI2014」电信网络 传送门 一个点选了就必须选若干个点,最大化点权之和,显然最大权闭合子图问题. 一个点向它范围内所有点连边,直接跑最大权闭合子图即可. 参考代码: #include < ...
- 「JSOI2014」学生选课
「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) ...
- 「JSOI2014」歌剧表演
「JSOI2014」歌剧表演 传送门 没想到吧我半夜切的 这道题应该算是 \(\text{JSOI2014}\) 里面比较简单的吧... 考虑用集合关系来表示分辨关系,具体地说就是我们把所有演员分成若 ...
- 「JSOI2014」强连通图
「JSOI2014」强连通图 传送门 第一问很显然就是最大的强连通分量的大小. 对于第二问,我们先把原图进行缩点,得到 \(\text{DAG}\) 后,统计出入度为零的点的个数和出度为零的点的个数, ...
- 「JSOI2014」序列维护
「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为学到了一种比较NB的 \(\text{update}\) 的方式.(参见这题) 我们可以把修改操作统一 ...
- [AHOI2014&&JSOI2014][bzoj3876] 支线剧情 [上下界费用流]
题面 传送门 思路 转化模型:给一张有向无环图,每次你可以选择一条路径走,花费的时间为路径上边权的总和,问要使所有边都被走至少一遍(可以重复),至少需要花费多久 走至少一遍,等价于覆盖这条边 也就是说 ...
随机推荐
- 对于一些stl自定义比较函数
1.unorderd_map自定义键 自定义类型 struct my_key { int num; string name; }; 1.由于unordered_map是采用哈希实现的,对于系统的类型i ...
- AcWing 846. 树的重心
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> ...
- java.net.URISyntaxException: Illegal character in query at index 147
这是url出现了特殊字符,需要将特殊字符进行替换
- stm32控制步进电机加减速
实习公司项目需要控制步进电机,电机方面主要包括控制运动.加减速.限位.下面介绍一下在电机控制方面的心得,由于对于电机的控制不需要很精确,并且自身能力有限,相比于大牛有很大的差距. 1.需要实现的功能 ...
- 关于php/js抓取/采集
前段时间用php的一个插件(phpQuery+queryList)写了采集某个博客的一些博文,然后用linux的自动运行跑,感觉还不错. 但在很久之前就已经听说了另外一个插件,可以很好的进行采集,叫做 ...
- canvas的描述
// 1.找到DOM节点 const canvas = document.getElementById('canvas'); // 2.画笔 --- canvas的上下文对象 const ctx = ...
- java篇 之 集合
集合 链接:https://blog.csdn.net/weixin_42504145/article/details/83119088 数组: java的数组既可以存储基本数据类型,也可以存储引 ...
- java篇 之 静态
Final:不可改变 Static:静态修饰符,在编译阶段就能确定了,可以修饰成员变量,相应的称之为静态变量 是一个共享的变量(被这个类和这个类所产生的对象所共享的,他是唯一的,出生时间 为类第一次产 ...
- Android学习09
SharedPreferences SharedPreferences,是一种轻量级的数据存储方式,采用Key/value的方式 进行映射,Sp通常用于记录一些参数配置.行为标记等! 1.获得mSha ...
- 【PAT甲级】1072 Gas Station (30 分)(Dijkstra)
题意: 输入四个正整数N,M,K,D(N<=1000,M<=10,K<=10000)分别表示房屋个数,加油站个数,路径条数和加油站最远服务距离,接着输入K行每行包括一条路的两条边和距 ...