SVM家族(一)
SVM家族简史
故事要从20世纪50年代说起,1957年,一个叫做感知器的模型被提出,
1963年, Vapnikand Chervonenkis, 提出了最大间隔分类器,SVM诞生了。
1992年,Vapnik 将核方法用于SVM,使SVM可以处理线性不可分数据
1995年,Corts和Vapnik引入了软间隔,允许SVM犯一些错
最强版SVM出现了,它将各式武学集于一身,软间隔、核方法、……,
1996年,SVR(support vector regression)诞生,svm家族又添一员,回归任务也不在话下。至此,SVM家族成为机器学习界顶级家族之一。关于SVM家族其他成员,可以参阅这里。
SVM是什么?
- 是一种监督学习分类算法,可以用于分类/回归任务
- SVM目标:寻找最优分割超平面以最大化训练数据的间隔
什么是超平面?
- 在一维空间,超平面是一个点
- 二维空间,超平面是一条线
- 三维空间,超平面是一个平面
- 更多维空间,称为超平面
什么是最优分割超平面?
- 尽可能远离每一个类别的样本点的超平面
- 首先,可以正确的将训练数据分类
- 其次,拥有更好的泛化能力
那么如何找到这个最优超平面呢?根据间隔
什么是间隔?
给定一个超平面,超平面到最近的样本点之间的距离的2倍称为间隔。
在最初的SVM中,间隔是一个强定义,即硬间隔,间隔之间不允许存在任何样本。(当数据中存在噪音时,会产生一些问题,所以后来软间隔被引入)
显然,间隔B小于间隔A。可知:
- 如果超平面越接近样本点,对应的间隔越小
- 超平面离样本点越远,间隔越大
所以最优超平面对应最大间隔,SVM就是围绕着这个间隔展开,如何计算这个间隔?
SVM家族(一)的更多相关文章
- 机器学习--boosting家族之GBDT
本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient ...
- 机器学习回顾篇(11):支持向量机(SVM)
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- EasyPR--开发详解(6)SVM开发详解
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机 ...
- 8.SVM用于多分类
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳 ...
- 5.SVM核函数
核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. ...
- 4. SVM分类器求解(2)
最优间隔分类器(optimal margin classifier) 重新回到SVM的优化问题: 我们将约束条件改写为: 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也 ...
- 2. SVM线性分类器
在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直 ...
- 1. SVM简介
从这一部分开始,将陆续介绍SVM的相关知识,主要是整理以前学习的一些笔记内容,梳理思路,形成一套SVM的学习体系. 支持向量机(Support Vector Machine)是Cortes和Vapni ...
- SVM分类与回归
SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libs ...
随机推荐
- Ardupilot(PX4)飞控驱动蜂鸣器和RGB细节
Ardupilot(PX4)飞控驱动蜂鸣器细节 飞控代码细节 任务调用频率50HZ(20ms),buzzer.update() 内部将频率减少到10HZ(100ms) 单响(SINGLE_BUZZ) ...
- Android的安装
基于VMware的Android虚拟机搭建 目录 基于VMware的Android虚拟机搭建 下载 安装 配置 使用 下载 进入VMware中国下载VMware Workstation Pro 进入f ...
- 【cs224w】Lecture 4 - 社区结构
Community 转自本人:https://blog.csdn.net/New2World/article/details/105328390 之前讲到了网络中节点扮演不同角色,而角色这个概念和社区 ...
- Elasticsearch+spring cloud201912301423
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...
- js获取dom节点之 id 获取
在JavaScript中,标准的id选择器调用语法是: document.getElementById('myid').style.width = pc + "%"; 但是,今天发 ...
- C# 快速开发框架搭建—环境搭建
一.新建MVC项目 打开vs2013新建空的解决方案,在解决方案中增加一个MVC项目,如图: 删除不需要的文件,剩下如图所示的文件夹: 首先创建一个MVC5控制器(Login,登入使用),该控制器无需 ...
- 为什么要学习Oracle技术?
为什么要学习Oracle技术? 众所周知,Oracle占据着企业数据库领域超过48.1%的市场份额,成为高端企业数据库软件的绝对领导者.随着时间的推移,企业数据库的规模不断扩大,富有经验的资深Orac ...
- Docker学习之搭建nginx环境
前言 很久没写随笔了,今天我们来学习一下如何在docker搭建nginx环境吧! 一:下载镜像,使用docker pull拉取最新的nginx镜像 命令:docker pull nginx 查看镜像: ...
- 大曾Blogs使用说明书😊——Super ITZ
大曾Blogs使用说明书 先敲黑板,四句话: pipe搜索,简洁,用于跳转,博客园及csdn和github 博客园炫酷界面,用于查看主要博文 csdn所有博客汇总,查看详细信息 github项目源码汇 ...
- 分治与递归-Starssen矩阵乘法
代码实现: /** * 矩阵乘法求解 * @author Administrator * */ public class Strassen { public static final int NUMB ...