一、实验目的

在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≈P(x).

二、实验原理

三、实验程序

四、实验内容

求之f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式.

五、实验程序

  

syms x
f(x)=x^4;
a=0;
b=2; %左右断点值
n=4; %节点数为n+1
h=(b-a)/n;%h为相邻节点间的间距
u=1/2;
v=1/2; %等距节点下u,v的值一直为1/2
d=zeros(n+1,1);
D=zeros(n+1,n+1);
S=cell(4,1);
d(1)=12/h*((f(a+h)-f(a))/h-subs(diff(f(x)),x,a));
d(n+1)=12/h*(subs(diff(f(x)),x,b)-(f(b)-f(b-h))/h);
D(n+1,n+1)=4;
for i=2:n
d(i)=12*((f(a+h*i)-f(a+h*(i-1)))/h-(f(a+h*(i-1))-f(a+h*(i-2))/h))/(2*h);
end
for j=1:n
D(j,j)=4;
D(j,j+1)=v;
D(j+1,j)=u;
end
M=linsolve(D,d);
for k=1:n
s1=M(k,1)*(a+h*k-x)^3/(6*h)+M(k+1,1)*(x-a-h*(k-1))/(6*h)+f(a+h*(k-1)-M(k,1)*h*h/6)*((a+h*k-x)^3/(6*h)+M(k+1,1)*(x-a-h*(k-1)))/h+(f(a+h*k)-M(k+1,1)*h*h/6)*(x-a-h*(k-1))/h;
s2=vpa(s1,4);
S{k,1}=char(s2);
end

五、运算结果 

数值计算方法实验之按照按三弯矩方程及追赶法的三次样条插值 (MATLAB 代码)的更多相关文章

  1. 数值计算方法实验之newton多项式插值 (Python 代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  2. 数值计算方法实验之Hermite 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  3. 数值计算方法实验之Newton 多项式插值(MATLAB代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  4. 数值计算方法实验之Lagrange 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  5. 数值计算方法 | C语言实现几个数值计算方法(实验报告版)

    目录 写在前面 实验一 牛顿插值方法的实现 实验二 龙贝格求积算法的实现 实验三 高斯列主元消去法的实现 实验四 最小二乘方法的实现 写在前面 使用教材:<数值计算方法>黄云清等编著 科学 ...

  6. Python 实验报告(第三周)

    一.实验目的和要求 1.熟练运用常见选择结构: 2.熟练运用for循环和while循环: 3.理解带else语句的循环结构执行过程和break.continue语句在循环中的作用. 二.实验环境 软件 ...

  7. [转] 三种Python下载url并保存文件的代码

    原文 三种Python下载url并保存文件的代码 利用程序自己编写下载文件挺有意思的. Python中最流行的方法就是通过Http利用urllib或者urllib2模块. 当然你也可以利用ftplib ...

  8. 页面三个txt加载联动省市县的代码,类似淘宝的收货地址的布局

    页面三个txt加载联动省市县的代码,假如有一个树形的JSON,分别显示的省市县这时候三个TXT怎么做联动效果呢,这里用framework7为例HTML: <div class="lis ...

  9. 三种动态加载js的jquery实例代码另附去除js方法

    !-- 这里为你提供了三种动态加载js的jquery实例代码哦,由于jquery是为用户提供方便的,所以利用jquery动态加载文件只要一句话$.getscript("test.js&quo ...

随机推荐

  1. 新手必备 | 史上最全的PyTorch学习资源汇总

    目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源      - NLP&PyTorch实战      - CV&PyTorch实战 PyTorch论 ...

  2. JavaScript之onclick事件

    对于给同一个元素添加两个点击事件时,其中一个是通过js获取元素添加点击事件另一个是通过内联的方法为元素添加事件. 执行之后只会执行通过元素获取的点击事件.而内联式的添加点击事件是不会执行的 还有一个就 ...

  3. UVA - 10200 Prime Time 关于 double类型 卡精度

    题意: 给定一个区间,a到b, n在区间内,有一个计算素数的公式,n*n+n+41,将n带进去可以得出一个数字.但是这个公式可能不准确,求出这个公式在这个区间内的准确率. 直接模拟就好了,不过要 注意 ...

  4. coding++:JS数组去重的几种常见方法

    一.简单的去重方法 // 最简单数组去重法 /* * 新建一新数组,遍历传入数组,值不在新数组就push进该新数组中 * IE8以下不支持数组的indexOf方法 * */ function uniq ...

  5. Ubuntu系统下命令行查看自己已安装的桌面环境问题

    原因:有时我们进行远程连接时需要知道我们的Ubuntu系统已安装的桌面环境,这时我们可以使用[dpkg]命令. [dpkg]:dpkg命令是Debian Linux系统用来安装.创建和管理软件包的实用 ...

  6. 模块 random 随机

    random 随机数 0 导入 >>> import random 1 random 随机小数 random.random() # 大于0且小于1之间的小数 0.7664338663 ...

  7. 1019 General Palindromic Number (20 分)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...

  8. PTA数据结构与算法题目集(中文) 7-19

    PTA数据结构与算法题目集(中文)  7-19 7-19 求链式线性表的倒数第K项 (20 分)   给定一系列正整数,请设计一个尽可能高效的算法,查找倒数第K个位置上的数字. 输入格式: 输入首先给 ...

  9. servlet web.xml 3.1版本的头信息

    <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="http://xmln ...

  10. php--phpstudy更新数据库版本后,无法一键启动

    只需输入以下命令即可: sc delete mysql