Divisors

题目链接(点击)

Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?

Input

The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.

Output

For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 2 63 - 1.

Sample Input

5 1
6 3
10 4

Sample Output

2
6
16

思路:

之前用求逆元的方法可以将组合数的最终值求出来,但是这个题目并没有给出要mod的值,所以先将结果求出来然后用唯一分解定理求因子个数的思路行不通。(即使求出来,结果也肯定会爆LL,导致根本无法将整个数保留下来求因子个数)

后来尝试将阶乘的前几个的值求出来然后求因子个数最后将 每个个数 相乘就得到结果

例如:C(9,3)

= 9 * 8 * 7

3 * 2 * 1

先将   9/3=3 的因子个数 2

8/2=4 的因子个数 3

7/1=7 的因子个数 2

然后   相乘 即: 2*3*2=12 即为答案

但是这样也是错的,因为这样 可能会导致后面的数分母不能化为1

例如: C(10,5)

= 10 * 9 * 8 * 7 * 6

5  * 4 * 3 * 2 * 1

先将10/5=2的 因子个数 2

9/4= ??这就错了

*************************************************************************************************************************************************

后来听同学的思路:

1.将1~431的每个素数个数用数组存起来

例: 10

sum[10][2]=1;

sum[10][3]=0;

sum[10][5]=1;

:

:

同时最好可以在打表的时候将n!对应素数个数直接存起来(特别好实现):

 num[i][prime[j]]=num[i-1][prime[j]]+count1  ///就可以了

2.求出分母的每个素数的个数

3.求出分子的每个素数的个数

4.将上面的数目对应相减就是最终值通过唯一分解定理得出的素数乘积

例:C(9,3)

9 =3^2               3=3^1

8=2^3                2=2^1

7=7^1                1=2^0

即:   3^2 * 2^3 * 7^1

3^1 * 2^1 * 2^0

结果: 3^1 * 7^1 * 2^2

所以:   (1+1)* (1+1) * (2+1)=12;

*************************************************************************************************************************************************

AC代码:

#include<stdio.h>
typedef long long LL;
int prime[505],flag[505];
void allprime()
{
int count=0;
for(int i=2;i<=431;i++){
if(flag[i]==0){
prime[count++]=i;
}
for(int j=0;j<count&&prime[j]*i<=431;j++){
flag[i*prime[j]]=1;
if(i%prime[j]==0){
break;
}
}
}/// 82个
} //欧拉筛素数
int num[505][505];
int up,down;
int main()
{
allprime();
for(int i=1;i<=431;i++){
int num1=i;
for(int j=0;j<=82;j++){
int count1=0;
while(num1%prime[j]==0){
count1++;
num1/=prime[j];
}
num[i][prime[j]]=num[i-1][prime[j]]+count1;
}
} //打表
//printf("*%d\n",num[9][3]);
int n,k;
while(~scanf("%d%d",&n,&k)){
LL sum=1;
for(int i=0;i<=82;i++){
up=num[n][prime[i]]-num[n-k][prime[i]];
down=num[k][prime[i]];
sum*=(up-down+1);
}
printf("%lld\n",sum);
}
return 0;
}

Divisors (求解组合数因子个数)【唯一分解定理】的更多相关文章

  1. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  2. POJ1845Sumdiv(求所有因子和 + 唯一分解定理)

    Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 17387   Accepted: 4374 Descripti ...

  3. Divisors_组合数因子个数

    Description Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- ...

  4. POJ 2992 Divisors (求因子个数)

    题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...

  5. 2018.09.28 牛客网contest/197/A因子(唯一分解定理)

    传送门 比赛的时候由于变量名打错了调了很久啊. 这道题显然是唯一分解定理的应用. 我们令P=a1p1∗a2p2∗...∗akpkP=a_1^{p_1}*a_2^{p_2}*...*a_k^{p_k}P ...

  6. Almost All Divisors(求因子个数及思维)

    ---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...

  7. UVA294DIvisors(唯一分解定理+约数个数)

    题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...

  8. hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  9. B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板

    You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...

随机推荐

  1. javascript 页面各种高度宽度

    http://www.jb51.net/article/19844.htm js获取浏览器高度和宽度值,尽量的考虑了多浏览器. 图片 IE中: document.body.clientWidth == ...

  2. Jquery获取select option动态添加自定义属性值失效

    Jquery获取select option动态添加自定义属性值失效 2014/12/31 11:49:19 中国学网转载 编辑:李强 http://www.xue163.com/588880/3909 ...

  3. CentOS7初始化服务器开发环境——根据个人习惯而定

    目录 修改hostname 创建个人账户和组 修改hostname 编辑主机名称,注意:执行以下指令,无需重启服务器,因为此指令实时写入linux 内核 hostnamectl --static se ...

  4. PHP基础-自定义函数-变量范围-函数参数传递

    一.自定义函数    function 函数名([形式参数1,形式参数2,....形式参数n]){        //各种PHP代码....        //......        return ...

  5. Java8中的Lambda表达式

    Lambda是什么 Lambda表达式,也可称为闭包,是java8的新特性,作用是取代大部分内部类,优化java代码结构,让代码变得更加简洁紧凑. Lambda的基本语法 (expression)-& ...

  6. Bank2

    Account: package banking2; //账户 public class Account { private double balance;// 账户余额 public Account ...

  7. Parrot os笔记本推荐

    parrot os基于debian开发的,因此同样适用于其他linux:笔记本集显最好,linux直接适用于intel,不用手动切换显卡,大多数linux玩家及pentester不需要高性能显卡,当然 ...

  8. 04 . Python入门之条件语句

    一. Python条件语句 Python条件语句是通过一条或多条语句执行结果(True或False)来决定执行的代码块. 可以通过下图简单了解语句的执行过程 Python程序语言指定任何非0和非空(n ...

  9. Spring ( 四 )Spring的AOP动态代理、切面编程

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.AOP切面编程 1.什么是AOP AOP是面向切面编程.全称:Aspect Oriented Pro ...

  10. Java实现 LeetCode 485 最大连续1的个数

    485. 最大连续1的个数 给定一个二进制数组, 计算其中最大连续1的个数. 示例 1: 输入: [1,1,0,1,1,1] 输出: 3 解释: 开头的两位和最后的三位都是连续1,所以最大连续1的个数 ...