(数据科学学习手札81)conda+jupyter玩转数据科学环境搭建
本文示例yaml文件已上传至我的
Github
仓库https://github.com/CNFeffery/DataScienceStudyNotes
1 简介
我们在使用Python
进行数据分析时,很多时候都在解决环境搭建的问题,不同版本、依赖包等问题经常给数据科学工作流的搭建和运转带来各种各样令人头疼的问题,本文就将基于笔者自己摸索出的经验,以geopandas
环境的搭建为例,教你使用conda
+jupyter
轻松搞定环境的搭建、管理与拓展。
图1
2 虚拟环境的搭建与使用
2.1 使用conda创建虚拟环境
以Windows
操作系统为例,因为全程主要使用命令行,所以其他系统方法类似,有少许语句有差异的地方遇到问题时可以自行查找解决。首先我们要解决的是环境的创建,第一步需要安装conda
服务,这里我们有Anaconda
和miniconda
两种方式,本文选择miniconda
体积小巧,不会像Anaconda
那样自带数量众多的科学计算相关包而显得臃肿。
有条件上外网的读者朋友可以在官网( https://docs.conda.io/en/latest/miniconda.html )下载与你的操作系统对应的安装包,也可以在清华大学镜像站-获取下载链接-应用软件-Conda( https://mirrors.tuna.tsinghua.edu.cn/ )中下载对应的最新的安装包:
图2
本文选择的是从官网下载的最新版本4.8.2
,因为miniconda
自带Python
,之后所有新环境的创建我们都可以通过conda
来实施,所以建议你在安装之前系统中不要保有其他Python
环境。下载完成之后直接打开安装,一路可以按照默认的选项继续,到图3显示的步骤时为了方便之后的使用建议都勾选上:
图3
完成安装后我们进入控制台输入conda --version
检查是否成功安装:
C:\Users\hp>conda --version
conda 4.8.2
输入conda env list
查看当前存在的所有环境:
C:\Users\hp>conda env list
# conda environments:
#
base * C:\Conda
可以看到我们当前只有1个环境base,即miniconda
自带的Python
,因为图3中我们勾选了Register Miniconda3 as the system Python 3.7,所以在控制台中直接输入python
可以得到下列结果:
C:\Users\hp>python
Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Warning:
This Python interpreter is in a conda environment, but the environment has
not been activated. Libraries may fail to load. To activate this environment
please see https://conda.io/activation
Type "help", "copyright", "credits" or "license" for more information.
>>> quit() # 退出
C:\Users\hp>
控制台输入conda list
可以看到当前仅有的base环境中仅有下列包:
C:\Users\hp>conda list
# packages in environment at C:\Conda:
#
# Name Version Build Channel
asn1crypto 1.3.0 py37_0 defaults
ca-certificates 2020.1.1 0 defaults
certifi 2019.11.28 py37_0 defaults
cffi 1.14.0 py37h7a1dbc1_0 defaults
chardet 3.0.4 py37_1003 defaults
conda 4.8.2 py37_0 defaults
conda-package-handling 1.6.0 py37h62dcd97_0 defaults
console_shortcut 0.1.1 4 defaults
cryptography 2.8 py37h7a1dbc1_0 defaults
idna 2.8 py37_0 defaults
menuinst 1.4.16 py37he774522_0 defaults
openssl 1.1.1d he774522_4 defaults
pip 20.0.2 py37_1 defaults
powershell_shortcut 0.0.1 3 defaults
pycosat 0.6.3 py37he774522_0 defaults
pycparser 2.19 py37_0 defaults
pyopenssl 19.1.0 py37_0 defaults
pysocks 1.7.1 py37_0 defaults
python 3.7.6 h60c2a47_2 defaults
pywin32 227 py37he774522_1 defaults
requests 2.22.0 py37_1 defaults
ruamel_yaml 0.15.87 py37he774522_0 defaults
setuptools 45.2.0 py37_0 defaults
six 1.14.0 py37_0 defaults
sqlite 3.31.1 he774522_0 defaults
tqdm 4.42.1 py_0 defaults
urllib3 1.25.8 py37_0 defaults
vc 14.1 h0510ff6_4 defaults
vs2015_runtime 14.16.27012 hf0eaf9b_1 defaults
wheel 0.34.2 py37_0 defaults
win_inet_pton 1.1.0 py37_0 defaults
wincertstore 0.2 py37_0 defaults
yaml 0.1.7 hc54c509_2 defaults
接下来我们开始来搭建本文用于举例说明的geopandas
环境,使用conda create -n 环境名称 python=版本
来创建新的环境,譬如这里我们创建名为python_spatial
的虚拟环境,Python
版本选择3.7
:
C:\Users\hp>conda create -n python_spatial python=3.7
遇到Proceed ([y]/n)?
输入y继续,等相关资源下载并安装配置完成后,再次查看当前存在的所有环境:
C:\Users\hp>conda env list
# conda environments:
#
base * C:\Conda
python_spatial C:\Conda\envs\python_spatial
可以看到与之前相比多了我们刚刚创建好的python_spatial
环境,使用conda activate 环境名称
来激活指定的环境:
C:\Users\hp>conda activate python_spatial
(python_spatial) C:\Users\hp>
可以发现这时命令行开头多了(python_spatial)
,这代表我们已经进入激活的python_spatial
环境中,接着我们就可以使用conda
命令在当前环境中安装geopandas
,按照官网的推荐方式从conda-forge对应的channel
进行安装,执行conda install --channel conda-forge geopandas
,遇到需要选择的地方一样地输入y,这里依赖包较多,需要等待较长时间,直到最后done
出现表示安装成功,在控制台中直接进入python
,检查geopandas
是否正确安装:
(python_spatial) C:\Users\hp>python
Python 3.7.7 (default, Mar 23 2020, 23:19:08) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import geopandas as gpd
>>>
至此,我们已经完成了geopandas
基础环境的搭建,接下来我们来配置使用jupyter
。
2.2 配置jupyter lab
类似conda
,jupyter
也分为jupyter notebook
和jupyter lab
,两者核心功能都差不多,但jupyter lab
拥有更多的拓展功能,并且界面和操作方式也更加炫酷方便,所以本文选择jupyter lab
,在上一节中创建好的python_spatial
环境下使用conda install jupyterlab
安装基础部分,安装结束之后,在python_spatial
环境下可以通过执行jupyter lab
来打开它,在此之前需要先为jupyter lab
配置虚拟环境,否则只能识别到默认的base
环境。
安装ipykernel
退出虚拟环境后执行
conda install ipykernel
。为虚拟环境安装ipykernel
执行
conda install -n python_spatial ipykernel
。激活虚拟环境&将虚拟环境写入jupyter的kernel中
C:\Users\hp>conda activate python_spatial
(python_spatial) C:\Users\hp>python -m ipykernel install --user --name python_spatial --display-name
"spatial"
Installed kernelspec python_spatial in C:\Users\hp\AppData\Roaming\jupyter\kernels\python_spatial
(python_spatial) C:\Users\hp>
这时我们在jupyter lab
中已经可以切换到python_spatial
环境了,接下来为了使用jupyter lab
的插件拓展,需要安装nodejs
,我们在python_spatial
下执行conda install nodejs
即可,完成安装之后根据自己对插件功能的需要可以分别安装不同的插件,下面举几个常用的例子:
html交互部件插件
为了在
jupyter lab
中渲染一些html部件,譬如tqdm
中的交互式进度条,在虚拟环境下执行下列命令:
pip install ipywidgets
jupyter labextension install @jupyter-widgets/jupyterlab-manager
完成后执行jupyter lab
,在打开的操作界面中notebook下点击python_spatial
创建新的notebook,执行如下命令(请提前安装好tqdm
),可以看到出现了交互式的进度条:
图4
目录插件
在
ipynb
文件中可以用markdown
编写各级别标题,在使用下列插件自动生成目录:
jupyter labextension install @jupyterlab/toc
图5
matplotlib交互式绘图
使用
matplotlib
交互式绘图模式:
pip install ipympl
jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-matplotlib
安装完成后就可以使用%matplotlib widget
开启交互式绘图模式(请提前安装好geopandas
绘图依赖包descartes
):
图6
你也可以在侧边栏中发现更多的实用插件:
图7
2.3 虚拟环境的备份和恢复
conda
提供了将虚拟环境导出为yaml
文件的功能,使得我们可以保留好不容易创建好的虚拟环境中的配置信息,格式如conda env export > 导出路径\文件名.yml
,譬如我们导出前面创建好的python_spatial
到所需路径下:
(python_spatial) C:\Users\hp>conda env export > C:\Users\hp\Desktop\python_spatial.yml
(python_spatial) C:\Users\hp>
之后你可以在安装好conda
服务的其他机器上按照conda env create -n 新环境名称 -f 路径\文件名.yml
,譬如我们就在本机上用已经导出的python_spatial.yml
复制为新的虚拟环境,耐心等待之后conda
会自动完成前面所有我们手动实现的步骤:
conda env create -n new_python_spatial -f C:\Users\hp\Desktop\python_spatial.yml
之后只需要像前文中一样执行python -m ipykernel install --user --name new_python_spatial --display-name "new spatial"
从而为jupyter lab
添加新的虚拟环境的kernel信息,在new_python_spatial
环境下启动jupyter lab
,这是我们可使用的环境变成了3个:
图8
2.4 虚拟环境的移除
使用conda remove -n 环境名称 --all
来移除已经创建的环境,譬如我们使用conda remove -n new_python_spatial -all
将new_python_spatial
移除之后,再次查看所有环境:
C:\Users\hp>conda env list
# conda environments:
#
base * C:\Conda
python_spatial C:\Conda\envs\python_spatial
但这时会存在一个恼人的地方,我们这里只是移除了虚拟环境,但前面注册到jupyter lab
中的kernel还会显示,但实际上是没有对应环境存在的,所以强行选择已经移除的环境对应的kernel会报错:
图9
控制台中使用jupyter kernelspec list
查看信息:
C:\Users\hp>jupyter kernelspec list
Available kernels:
new_python_spatial C:\Users\hp\AppData\Roaming\jupyter\kernels\new_python_spatial
python_spatial C:\Users\hp\AppData\Roaming\jupyter\kernels\python_spatial
python3 C:\Conda\share\jupyter\kernels\python3
接着使用jupyter kernelspec remove kernel名称
对其进行移除即可:
C:\Users\hp>jupyter kernelspec remove new_python_spatial
Kernel specs to remove:
new_python_spatial C:\Users\hp\AppData\Roaming\jupyter\kernels\new_python_spatial
Remove 1 kernel specs [y/N]: y
[RemoveKernelSpec] Removed C:\Users\hp\AppData\Roaming\jupyter\kernels\new_python_spatial
之后在启动jupyter lab
就会发现残余的kernel跟着消失了,而如果想要修改某个kernel的显示名称,可以同样在对应的虚拟环境下使用jupyter kernelspec list
查看每个kernel以及其对应的路径,前往路径下把kernel.json
中display_name
键对应的值改成新名称即可。
以上就是本文的全部内容,对应的yaml
文件已上传至文章开头的Github
仓库中,你可以直接基于它创建对应本文python_spatial
的虚拟环境,如有疑问之处可以留言或在Github
仓库下创建issues向我提问。
(数据科学学习手札81)conda+jupyter玩转数据科学环境搭建的更多相关文章
- (数据科学学习手札05)Python与R数据读入存出方式的总结与比较
在数据分析的过程中,外部数据的导入和数据的导出是非常关键的部分,而Python和R在这方面大同小异,且针对不同的包或模块,对应着不同的函数来完成这部分功能: Python 1.TXT文件 导入: 以某 ...
- (数据科学学习手札59)从抓取数据到生成shp文件并展示
一.简介 shp格式的文件是地理信息领域最常见的文件格式之一,很好的结合了矢量数据与对应的标量数据,而在Python中我们可以使用pyshp来完成创建shp文件的过程,本文将从如何从高德地图获取矢量信 ...
- (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- (数据科学学习手札55)利用ggthemr来美化ggplot2图像
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...
- (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...
- (数据科学学习手札49)Scala中的模式匹配
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...
- (数据科学学习手札47)基于Python的网络数据采集实战(2)
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...
- (数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...
随机推荐
- java反序列化-ysoserial-调试分析总结篇(3)
前言: 这篇文章主要分析commoncollections3,这条利用链如yso描述,这个与cc1类似,只是反射调用方法是用的不是invokeTransformer而用的是InstantiateTra ...
- 达拉草201771010105《面向对象程序设计(java)》第十六周学习总结
达拉草201771010105<面向对象程序设计(java)>第十六周学习总结 第一部分:理论知识 1.程序与进程的概念: (1)程序是一段静态的代码,它是应用程序执行的蓝 本. (2)进 ...
- pip安装psycopg2失败解决
pip install psycopg2==2.8.4报错ERROR: Command "python setup.py egg_info" failed with error c ...
- 面试题57-II.和为s的连续正数序列
面试题57-II.和为s的连续正数序列 1.题目 LeetCode-面试题57-II.和为s的连续正数序列 输入一个正整数 target ,输出所有和为 target 的连续正整数序列(至少含有两个数 ...
- 使用SpringMVC实现文件上传和下载
文件上传 第一步,加入jar包: commons-fileupload-1.3.1.jar commons-io-2.4.jar 第二步,在SpringMVC配置文件中配置CommonsMultipa ...
- Vue请求第三方接口跨域最终解决办法!2020最终版!
废话少说,再百度的近三个小时尝试了近10种方法无解后,终于皇天不负有心人! 这个vue axios 跨域问题被我解决了! 需求:请求客户端ip地址获取客户ip,再根据ip获取用户位置 工具:Vue,a ...
- 「从零单排HBase 04」HBase高性能查询揭秘
先给结论吧:HBase利用compaction机制,通过大量的读延迟毛刺和一定的写阻塞,来换取整体上的读取延迟的平稳. 1.为什么要compaction 在上一篇 HBase读写 中我们提到了,HBa ...
- 在Tomcat上发布Web项目的方式
一. Tomcat的使用: 安装:解压压缩包即可 注意:安装目录不能有中文 目录结构: ①bin:可执行文件 ②conf:可执行文件 ③lib:依赖的jar包 ④logs:日志文件 ⑤:temp:临时 ...
- vs code开发python时找不到当前目录下的文件、UnicodeDecodeError: 'gbk'
一.vs code开发python时找不到当前目录下的文件, file = open("readme.txt")一直报错,找不到目录下面的文件 原来vscode 默认都是以打开的项 ...
- 【Oracle】RAC的多实例数据迁移至单机的多实例。
思路:一般的思路可以通过RMAN进行数据的恢复.由于数据库可以停机,因此,这次试用数据泵(expdp,impdp)进行数据 的导入导出. 1.源数据库导出 通过编写导出shell脚本导出数据,如下: ...