题目背景

开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道、一辆停在轨道底部的电梯、和电梯内一杆控制电梯升降的巨大手柄。

题目描述

Nescafe 之塔一共有N 层,升降梯在每层都有一个停靠点。手柄有M个控制槽,第i 个控制槽旁边标着一个数Ci,满足C1<C2<C3<⋯⋯<CM。如果Ci>0,表示手柄扳动到该槽时,电梯将上升Ci 层;如果Ci<0,表示手柄扳动到该槽时,电梯将下降-Ci 层;并且一定存在一个Ci=0,手柄最初就位于此槽中。注意升降梯只能在1到N 层间移动,因此扳动到使升降梯移动到1 层以下、N 层以上的控制槽是不允许的。

电梯每移动一层,需要花费2 秒钟时间,而手柄从一个控制槽扳到相邻的槽,需要花费1 秒钟时间。探险队员现在在1 层,并且想尽快到达N 层,他们想知道从1 层到N 层至少需要多长时间?

输入输出格式

输入格式:

第一行两个正整数 N、M。

第二行M 个整数C1、C2⋯⋯CM。

输出格式:

输出一个整数表示答案,即至少需要多长时间。若不可能到达输出-1。

输入输出样例

输入样例#1:

6 3
-1 0 2
输出样例#1:

19

说明

对于30% 的数据,满足1≤N≤ 10; 2≤M≤ 5。

对于100% 的数据,满足1≤N≤1000; 2 ≤ M ≤20;-N < C1 <C2 < …… < CM < N。

样例解释

手柄从第二个槽扳到第三个槽(0 扳到2),用时1 秒,电梯上升到3层,用时4 秒。

手柄在第三个槽不动,电梯再上升到5 层,用时4 秒。

手柄扳动到第一个槽(2 扳到-1),用时2 秒,电梯下降到4 层,用时2 秒。

手柄扳动到第三个槽(-1 扳倒2),用时2 秒,电梯上升到6 层,用时4 秒。

总用时为(1+4)+4+(2+2)+(2+4)=19 秒。

这套题考的是图论专题,欧教说这题是spfa。。。。对于这个我有点懵????

SPFA????????

好吧说实话我并没有看出来,也不知道怎么去建边建点。。我是用dp做的这道题

事后同学也说是spfa。。。我。。。。

好吧我是萌新我不知道大佬们的spfa是咋做的

我来讲我的dp做法吧

dp[i][j]表示在第i层的时候在第j槽。。。。

这个应该不能理解,这个定义同时也可以理解成,在i层的时候,上一次停留是在i-a[j]层

然后我们在转移状态的时候只需要枚举一下在第i-a[j]层的时候的手柄停留在哪个槽,比如枚举是在第k个槽

那么在从i-a[j]层到i层需要花费的时间是abs(k-j)+abs(a[j])*2

ok这样就可以得出状态转移方程式了

dp[i][j]=min(  dp[i][j]  ,  { dp[ i -a[j] ][ k ] + abs( k - j ) + abs ( a[j] ) * 2 }(1<=k<=m) )

做到这里,大体就完成了。。。但是不知道有没有注意到一个细节,就是i到底应该从n到1循环还是从1到n循环。。。。

好吧这个不是大问题,关键在于这个上升楼层有负数,即可以下降。。。。意思是无论我们从n到1还是1到n都不能转移完所有状态

所有这里可以check一下,如果在dp后数组的值有变化就再来一次,直到数组的值不会变化了。。。这里可以用while实现

 #include<cstdio>
#include<queue>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define maxn 1005
#define maxm 22
using namespace std; int n,m,a[maxm],s,ans=0x3f3f3f,f[maxn][maxm];
int cando=,val[maxn][maxm]; void change()
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
val[i][j]=f[i][j];
} void check()
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(val[i][j]!=f[i][j]){
cando=;return;//有变动
}
}
cando=;//无变动
} int main()
{
memset(f,0x3f3f3f,sizeof(f));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d",&a[i]);if(a[i]==)s=i;
}
f[][s]=;
for(int i=;i<=m;i++){if(i!=s)f[][i]=abs(s-i);} while(cando==){
change();
for(int i=n;i>=;i--)
{
for(int j=;j<=m;j++)
{
if(j!=s){
int ncnt=i-a[j];
if(ncnt<||ncnt>n)continue;
for(int k=;k<=m;k++){
if(k!=s){
int ntim=abs(k-j)+abs(a[j])*;
f[i][j]=min(f[i][j],ntim+f[ncnt][k]);
}
}
}
if(i==n)ans=min(ans,f[n][j]);
}
}
check();
} if(ans==0x3f3f3f)printf("-1");
else printf("%d",ans);
}

[tyvj2032]升降梯上<dp&spfa>的更多相关文章

  1. [Tyvj2032]升降梯上(最短路)

    [Tyvj2032]升降梯上 Description 开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道.一辆停在轨道底部的电梯.和电梯内一杆控制电梯升 ...

  2. TYVJ2032 升降梯上

    Description: 开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道.一辆停在轨道底部的电梯.和电梯内一杆控制电梯升降的巨大手柄.Nescafe ...

  3. [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA

    在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...

  4. TYVJ2032 「Poetize9」升降梯上

    P2032 「Poetize9」升降梯上 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道, ...

  5. 升降梯上——玄学dp

    升降梯上 题目描述 开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道.一辆停在轨道底部的电梯.和电梯内一杆控制电梯升降的巨大手柄. \(Nescafe ...

  6. POJ 3182 The Grove [DP(spfa) 射线法]

    题意: 给一个地图,给定起点和一块连续图形,走一圈围住这个图形求最小步数 本来是要做课件上一道$CF$题,先做一个简化版 只要保证图形有一个点在走出的多边形内就可以了 $hzc:$动态化静态的思想,假 ...

  7. DAG上dp思想

    DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...

  8. BZOJ1003物流運輸 DP + SPFA

    @[DP, SPFA] Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要\(n\)天才能运完.货物运输过程中一般要转 停好几个码头.物流公司通常会设计一条固定的运 ...

  9. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

随机推荐

  1. 阿里sentinel说明及使用

    使用说明 如果只是为了让使 用Sentinel 的限流功能,只需要引入相关的jar包依赖. 添加依赖 添加相关模块的Adapter Sentinel为每个构建项目的各个组件都打包成了相应的Adapte ...

  2. 关于IT培训机构的个人看法

    1.前言 缘分与巧合,最近接触比较多的培训机构出来的人,以及看过关于培训机构的文章和问答.虽然没在培训机构上过课,但是接触过很多培训机构出来的人,也看过一些培训机构的课程.关于培训机构,我也有自己的看 ...

  3. Sequence to Sequence Learning with Neural Networks论文阅读

    论文下载 作者(三位Google大佬)一开始提出DNN的缺点,DNN不能用于将序列映射到序列.此论文以机器翻译为例,核心模型是长短期记忆神经网络(LSTM),首先通过一个多层的LSTM将输入的语言序列 ...

  4. python第一次作业

    import turtle turtle.pensize(2) turtle.pencolor("black") turtle.fillcolor("red") ...

  5. 结巴分词demo

    #encoding=utf-8 from __future__ import unicode_literals import sys sys.path.append("../") ...

  6. JDK java version "1.8.0_181"环境搭建

    1.从官网上下载jdk软件,本人的系统是32位 WIN10 所以只能装1.8.0_181的了.x86 2.下载完就按照提示安装就可以了,傻瓜式操作就不多说了. 3.配置环境环境变量 3.1 点击我的电 ...

  7. 基于kylinTOP工具的HTTP2压力测试

    1.HTTP协议概述 说到http,那就应该先了解一下http协议的发展历史.关于http协议的历史,可以参考阮一峰老师的这篇博客文章HTTP 协议入门,里面介绍的比较详细了.简单来说http先后存在 ...

  8. XiaoQi.Study项目(二)

    一.EF Core 使用的补充 1) 创建 接口 IEFCoreService 2)   实现 接口 EFCoreService 3) 在Startup.cs 中注册 ef 服务 并在控制器中注入使用 ...

  9. ATOMac - 基于Python的Mac应用Ui自动化库

    ATOMacTest 一.缘 起 近期工作需要对一款Mac端应用实现常用功能的自动化操作,同事推荐ATOMac这款工具,这几天简单研究了下,同时也发现现网介绍ATOMac的资料非常有限,故在此记录下A ...

  10. SpringCloud微服务:Sentinel哨兵组件,管理服务限流和降级

    源码地址:GitHub·点这里||GitEE·点这里 一.基本简介 1.概念描述 Sentinel 以流量为切入点,从流量控制.熔断降级.系统负载保护等多个维度保护服务的稳定性.包括核心的独立类库,监 ...