RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类

 <dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>18.0</version>
</dependency>

限流:

每个API接口都是有访问上限的,当访问频率或者并发量超过其承受范围时候,我们就必须考虑限流来保证接口的可用性或者降级可用性.即接口也需要安装上保险丝,以防止非预期的请求对系统压力过大而引起的系统瘫痪.

通常的策略就是拒绝多余的访问,或者让多余的访问排队等待服务,或者引流.

如果要准确的控制QPS,简单的做法是维护一个单位时间内的Counter,如判断单位时间已经过去,则将Counter重置零.此做法被认为没有很好的处理单位时间的边界,比如在前一秒的最后一毫秒里和下一秒的第一毫秒都触发了最大的请求数,将目光移动一下,就看到在两毫秒内发生了两倍的QPS.

1、漏桶算法

漏桶(Leaky Bucket)算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水(接口有响应速率),当水流入速度过大会直接溢出(访问频率超过接口响应速率),然后就拒绝请求,可以看出漏桶算法能强行限制数据的传输速率.示意图如下:

可见这里有两个变量,一个是桶的大小,支持流量突发增多时可以存多少的水(burst),另一个是水桶漏洞的大小(rate),伪代码如下:

double rate; // leak rate in calls/s
double burst; // bucket size in calls
long refreshTime; // time for last water refresh
double water; // water count at refreshTime
refreshWater() {
long now = getTimeOfDay();
//水随着时间流逝,不断流走,最多就流干到0.
water = max(0, water- (now - refreshTime)*rate);
  refreshTime = now;
}
bool permissionGranted() {
  refreshWater();
  if (water < burst) { // 水桶还没满,继续加1
    water ++;
    return true;
  } else {
    return false;
  }
}

因为漏桶的漏出速率是固定的参数,所以,即使网络中不存在资源冲突(没有发生拥塞),漏桶算法也不能使流突发(burst)到端口速率.因此,漏桶算法对于存在突发特性的流量来说缺乏效率.

2、令牌桶算法

令牌桶算法(Token Bucket)和 Leaky Bucket 效果一样但方向相反的算法,更加容易理解.随着时间流逝,系统会按恒定1/QPS时间间隔(如果QPS=100,则间隔是10ms)往桶里加入Token(想象和漏洞漏水相反,有个水龙头在不断的加水),如果桶已经满了就不再加了.新请求来临时,会各自拿走一个Token,如果没有Token可拿了就阻塞或者拒绝服务.

令牌桶的另外一个好处是可以方便的改变速度. 一旦需要提高速率,则按需提高放入桶中的令牌的速率. 一般会定时(比如100毫秒)往桶中增加一定数量的令牌, 有些变种算法则实时的计算应该增加的令牌的数量.

3、RateLimiter简介

Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法(Token Bucket)来完成限流,非常易于使用.RateLimiter经常用于限制对一些物理资源或者逻辑资源的访问速率.它支持两种获取permits接口,一种是如果拿不到立刻返回false,一种会阻塞等待一段时间看能不能拿到.

RateLimiter和Java中的信号量(java.util.concurrent.Semaphore)类似,Semaphore通常用于限制并发量.

源码注释中的一个例子,比如我们有很多任务需要执行,但是我们不希望每秒超过两个任务执行,那么我们就可以使用RateLimiter:

final RateLimiter rateLimiter = RateLimiter.create(2.0);
void submitTasks(List<Runnable> tasks, Executor executor) {
for (Runnable task : tasks) {
rateLimiter.acquire(); // may wait
executor.execute(task);
}
}

另外一个例子,假如我们会产生一个数据流,然后我们想以每秒5kb的速度发送出去.我们可以每获取一个令牌(permit)就发送一个byte的数据,这样我们就可以通过一个每秒5000个令牌的RateLimiter来实现:

final RateLimiter rateLimiter = RateLimiter.create(5000.0);
void submitPacket(byte[] packet) {
rateLimiter.acquire(packet.length);
networkService.send(packet);
}

另外,我们也可以使用非阻塞的形式达到降级运行的目的,即使用非阻塞的tryAcquire()方法:

if(limiter.tryAcquire()) { //未请求到limiter则立即返回false
doSomething();
}else{
doSomethingElse();
}

4、RateLimiter主要接口

RateLimiter其实是一个abstract类,但是它提供了几个static方法用于创建RateLimiter:

/**
* 创建一个稳定输出令牌的RateLimiter,保证了平均每秒不超过permitsPerSecond个请求
* 当请求到来的速度超过了permitsPerSecond,保证每秒只处理permitsPerSecond个请求
* 当这个RateLimiter使用不足(即请求到来速度小于permitsPerSecond),会囤积最多permitsPerSecond个请求
*/
public static RateLimiter create(double permitsPerSecond);
/**
* 创建一个稳定输出令牌的RateLimiter,保证了平均每秒不超过permitsPerSecond个请求
* 还包含一个热身期(warmup period),热身期内,RateLimiter会平滑的将其释放令牌的速率加大,直到起达到最大速率
* 同样,如果RateLimiter在热身期没有足够的请求(unused),则起速率会逐渐降低到冷却状态
*
* 设计这个的意图是为了满足那种资源提供方需要热身时间,而不是每次访问都能提供稳定速率的服务的情况(比如带缓存服务,需要定期刷新缓存的)
* 参数warmupPeriod和unit决定了其从冷却状态到达最大速率的时间
*/
public static RateLimiter create(double permitsPerSecond, long warmupPeriod, TimeUnit unit);

提供了两个获取令牌的方法,不带参数表示获取一个令牌.如果没有令牌则一直等待,返回等待的时间(单位为秒),没有被限流则直接返回0.0:

public double acquire();
public double acquire(int permits);

尝试获取令牌,分为待超时时间和不带超时时间两种:

public boolean tryAcquire();
//尝试获取一个令牌,立即返回
public boolean tryAcquire(int permits);
public boolean tryAcquire(long timeout, TimeUnit unit);
//尝试获取permits个令牌,带超时时间
public boolean tryAcquire(int permits, long timeout, TimeUnit unit);

4.1:RateLimiter 方法摘要

5、RateLimiter设计

考虑一下RateLimiter是如何设计的,并且为什么要这样设计.

RateLimiter的主要功能就是提供一个稳定的速率,实现方式就是通过限制请求流入的速度,比如计算请求等待合适的时间阈值.

实现QPS速率的最简单的方式就是记住上一次请求的最后授权时间,然后保证1/QPS秒内不允许请求进入.比如QPS=5,如果我们保证最后一个被授权请求之后的200ms的时间内没有请求被授权,那么我们就达到了预期的速率.如果一个请求现在过来但是最后一个被授权请求是在100ms之前,那么我们就要求当前这个请求等待100ms.按照这个思路,请求15个新令牌(许可证)就需要3秒.

有一点很重要:上面这个设计思路的RateLimiter记忆非常的浅,它的脑容量非常的小,只记得上一次被授权的请求的时间.如果RateLimiter的一个被授权请求q之前很长一段时间没有被使用会怎么样?这个RateLimiter会立马忘记过去这一段时间的利用不足,而只记得刚刚的请求q.

过去一段时间的利用不足意味着有过剩的资源是可以利用的.这种情况下,RateLimiter应该加把劲(speed up for a while)将这些过剩的资源利用起来.比如在向网络中发生数据的场景(限流),过去一段时间的利用不足可能意味着网卡缓冲区是空的,这种场景下,我们是可以加速发送来将这些过程的资源利用起来.

另一方面,过去一段时间的利用不足可能意味着处理请求的服务器对即将到来的请求是准备不足的(less ready for future requests),比如因为很长一段时间没有请求当前服务器的cache是陈旧的,进而导致即将到来的请求会触发一个昂贵的操作(比如重新刷新全量的缓存).

为了处理这种情况,RateLimiter中增加了一个维度的信息,就是过去一段时间的利用不足(past underutilization),代码中使用storedPermits变量表示.当没有利用不足这个变量为0,最大能达到maxStoredPermits(maxStoredPermits表示完全没有利用).因此,请求的令牌可能从两个地方来:

1.过去剩余的令牌(stored permits, 可能没有)
2.现有的令牌(fresh permits,当前这段时间还没用完的令牌)

我们将通过一个例子来解释它是如何工作的:

对一个每秒产生一个令牌的RateLimiter,每有一个没有使用令牌的一秒,我们就将storedPermits加1,如果RateLimiter在10秒都没有使用,则storedPermits变成10.0.这个时候,一个请求到来并请求三个令牌(acquire(3)),我们将从storedPermits中的令牌为其服务,storedPermits变为7.0.这个请求之后立马又有一个请求到来并请求10个令牌,我们将从storedPermits剩余的7个令牌给这个请求,剩下还需要三个令牌,我们将从RateLimiter新产生的令牌中获取.我们已经知道,RateLimiter每秒新产生1个令牌,就是说上面这个请求还需要的3个请求就要求其等待3秒.

想象一个RateLimiter每秒产生一个令牌,现在完全没有使用(处于初始状态),限制一个昂贵的请求acquire(100)过来.如果我们选择让这个请求等待100秒再允许其执行,这显然很荒谬.我们为什么什么也不做而只是傻傻的等待100秒,一个更好的做法是允许这个请求立即执行(和acquire(1)没有区别),然后将随后到来的请求推迟到正确的时间点.这种策略,我们允许这个昂贵的任务立即执行,并将随后到来的请求推迟100秒.这种策略就是让任务的执行和等待同时进行.

一个重要的结论:RateLimiter不会记最后一个请求,而是即下一个请求允许执行的时间.这也可以很直白的告诉我们到达下一个调度时间点的时间间隔.然后定一个一段时间未使用的Ratelimiter也很简单:下一个调度时间点已经过去,这个时间点和现在时间的差就是Ratelimiter多久没有被使用,我们会将这一段时间翻译成storedPermits.所有,如果每秒钟产生一个令牌(rate==1),并且正好每秒来一个请求,那么storedPermits就不会增长

6、RateLimiter主要源码

RateLimiter定义了两个create函数用于构建不同形式的RateLimiter:

//用于创建SmoothBursty类型的RateLimiter
1.public static RateLimiter create(double permitsPerSecond) 2.public static RateLimiter create(double permitsPerSecond, long warmupPeriod, TimeUnit unit)

源码下面以acquire为例子,分析一下RateLimiter如何实现限流:

public double acquire() {
  return acquire(1);
}
public double acquire(int permits) {
  long microsToWait = reserve(permits);
  stopwatch.sleepMicrosUninterruptibly(microsToWait);
  return 1.0 * microsToWait / SECONDS.toMicros(1L);
}
final long reserve(int permits) {
  checkPermits(permits);
  synchronized (mutex()) { //应对并发情况需要同步
  return reserveAndGetWaitLength(permits, stopwatch.readMicros());
}
}
final long reserveAndGetWaitLength(int permits, long nowMicros) {
  long momentAvailable = reserveEarliestAvailable(permits, nowMicros);
  return max(momentAvailable - nowMicros, 0);
}

下面方法来自RateLimiter的具体实现类SmoothRateLimiter:

final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
  resync(nowMicros); //补充令牌
  long returnValue = nextFreeTicketMicros;
  //这次请求消耗的令牌数目
  double storedPermitsToSpend = min(requiredPermits, this.storedPermits);
  double freshPermits = requiredPermits - storedPermitsToSpend;
  long waitMicros = storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)
  + (long) (freshPermits * stableIntervalMicros);
  this.nextFreeTicketMicros = nextFreeTicketMicros + waitMicros;
  this.storedPermits -= storedPermitsToSpend;
  return returnValue;
}
private void resync(long nowMicros) {
  // if nextFreeTicket is in the past, resync to now
  if (nowMicros > nextFreeTicketMicros) {
    storedPermits = min(maxPermits,
    storedPermits + (nowMicros - nextFreeTicketMicros) / stableIntervalMicros);
    nextFreeTicketMicros = nowMicros;
  }
}

另外,对于storedPermits的使用,RateLimiter存在两种策略,二者区别主要体现在使用storedPermits时候需要等待的时间。这个逻辑由storedPermitsToWaitTime函数实现:

/**
* Translates a specified portion of our currently stored permits which we want to
* spend/acquire, into a throttling time. Conceptually, this evaluates the integral
* of the underlying function we use, for the range of
* [(storedPermits - permitsToTake), storedPermits].
*
* <p>This always holds: {@code 0 <= permitsToTake <= storedPermits}
*/
abstract long storedPermitsToWaitTime(double storedPermits, double permitsToTake);

存在两种策略就是为了应对我们上面讲到的,存在资源使用不足大致分为两种情况: (1).资源确实使用不足,这些剩余的资源我们私海可以使用的; (2).提供资源的服务过去还没准备好,比如服务刚启动等;

为此,RateLimiter实际上由两种实现策略,其实现分别见SmoothBursty和SmoothWarmingUp。二者主要的区别就是storedPermitsToWaitTime实现以及maxPermits数量的计算。

6.1 SmoothBursty

SmoothBursty使用storedPermits不需要额外等待时间。并且默认maxBurstSeconds未1,因此maxPermits为permitsPerSecond,即最多可以存储1秒的剩余令牌,比如QPS=5,则maxPermits=5.

下面这个RateLimiter的入口就是用来创建SmoothBursty类型的RateLimiter,

public static RateLimiter create(double permitsPerSecond)
/**
* This implements a "bursty" RateLimiter, where storedPermits are translated to
* zero throttling. The maximum number of permits that can be saved (when the RateLimiter is
* unused) is defined in terms of time, in this sense: if a RateLimiter is 2qps, and this
* time is specified as 10 seconds, we can save up to 2 * 10 = 20 permits.
*/
static final class SmoothBursty extends SmoothRateLimiter {
/** The work (permits) of how many seconds can be saved up if this RateLimiter is unused? */
  final double maxBurstSeconds;
  SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) {
    super(stopwatch);
    this.maxBurstSeconds = maxBurstSeconds;
  }
  void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
    double oldMaxPermits = this.maxPermits;
    maxPermits = maxBurstSeconds * permitsPerSecond;
    System.out.println("maxPermits=" + maxPermits);
    if (oldMaxPermits == Double.POSITIVE_INFINITY) {
      // if we don't special-case this, we would get storedPermits == NaN, below
      storedPermits = maxPermits;
    } else {
      storedPermits = (oldMaxPermits == 0.0)
      ? 0.0 // initial state
      : storedPermits * maxPermits / oldMaxPermits;
    }
  }
    long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
    return 0L;
  }
}

一个简单的使用示意图及解释,下面私海一个QPS=4的SmoothBursty:

(1).t=0,这时候storedPermits=0,请求1个令牌,等待时间=0;
(2).t=1,这时候storedPermits=3,请求3个令牌,等待时间=0;
(3).t=2,这时候storedPermits=4,请求10个令牌,等待时间=0,超前使用了2个令牌;
(4).t=3,这时候storedPermits=0,请求1个令牌,等待时间=0.5;

代码的输出:

maxPermits=4.0, storedPermits=7.2E-4, stableIntervalMicros=250000.0, nextFreeTicketMicros=1472
acquire(1), sleepSecond=0.0
maxPermits=4.0, storedPermits=3.012212, stableIntervalMicros=250000.0, nextFreeTicketMicros=1004345
acquire(3), sleepSecond=0.0
maxPermits=4.0, storedPermits=4.0, stableIntervalMicros=250000.0, nextFreeTicketMicros=2004668
acquire(10), sleepSecond=0.0
maxPermits=4.0, storedPermits=0.0, stableIntervalMicros=250000.0, nextFreeTicketMicros=3504668
acquire(1), sleepSecond=0.499591

6.2 SmoothWarmingUp

  static final class SmoothWarmingUp extends SmoothRateLimiter {
private final long warmupPeriodMicros;
/**
* The slope of the line from the stable interval (when permits == 0), to the cold interval
* (when permits == maxPermits)
*/
private double slope;
private double halfPermits; SmoothWarmingUp(SleepingStopwatch stopwatch, long warmupPeriod, TimeUnit timeUnit) {
super(stopwatch);
this.warmupPeriodMicros = timeUnit.toMicros(warmupPeriod);
} @Override
void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
double oldMaxPermits = maxPermits;
maxPermits = warmupPeriodMicros / stableIntervalMicros;
halfPermits = maxPermits / 2.0;
// Stable interval is x, cold is 3x, so on average it's 2x. Double the time -> halve the rate
double coldIntervalMicros = stableIntervalMicros * 3.0;
slope = (coldIntervalMicros - stableIntervalMicros) / halfPermits;
if (oldMaxPermits == Double.POSITIVE_INFINITY) {
// if we don't special-case this, we would get storedPermits == NaN, below
storedPermits = 0.0;
} else {
storedPermits = (oldMaxPermits == 0.0)
? maxPermits // initial state is cold
: storedPermits * maxPermits / oldMaxPermits;
}
} @Override
long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
double availablePermitsAboveHalf = storedPermits - halfPermits;
long micros = 0;
// measuring the integral on the right part of the function (the climbing line)
if (availablePermitsAboveHalf > 0.0) {
double permitsAboveHalfToTake = min(availablePermitsAboveHalf, permitsToTake);
micros = (long) (permitsAboveHalfToTake * (permitsToTime(availablePermitsAboveHalf)
+ permitsToTime(availablePermitsAboveHalf - permitsAboveHalfToTake)) / 2.0);
permitsToTake -= permitsAboveHalfToTake;
}
// measuring the integral on the left part of the function (the horizontal line)
micros += (stableIntervalMicros * permitsToTake);
return micros;
} private double permitsToTime(double permits) {
return stableIntervalMicros + permits * slope;
}
}

maxPermits等于热身(warmup)期间能产生的令牌数,比如QPS=4,warmup为2秒,则maxPermits=8.halfPermits为maxPermits的一半.

参考注释中的神图:

* ^ throttling
* |
* 3*stable + /
* interval | /.
* (cold) | / .
* | / . <-- "warmup period" is the area of the trapezoid between
* 2*stable + / . halfPermits and maxPermits
* interval | / .
* | / .
* | / .
* stable +----------/ WARM . }
* interval | . UP . } <-- this rectangle (from 0 to maxPermits, and
* | . PERIOD. } height == stableInterval) defines the cooldown period,
* | . . } and we want cooldownPeriod == warmupPeriod
* |---------------------------------> storedPermits
* (halfPermits) (maxPermits)
*

下面是我们QPS=4,warmup为2秒时候对应的图。

maxPermits=8,halfPermits=4,和SmoothBursty相同的请求序列:

(1).t=0,这时候storedPermits=8,请求1个令牌,使用1个storedPermits消耗时间=1×(0.75+0.625)/2=0.6875秒;
(2).t=1,这时候storedPermits=8,请求3个令牌,使用3个storedPermits消耗时间=3×(0.75+0.375)/2=1.6875秒(注意已经超过1秒了,意味着下次产生新Permit时间为2.6875);
(3).t=2,这时候storedPermits=5,请求10个令牌,使用5个storedPermits消耗时间=1×(0.375+0.25)/2+4*0.25=1.3125秒,再加上额外请求的5个新产生的Permit需要消耗=5*0.25=1.25秒,即总共需要耗时2.5625秒,则下一次产生新的Permit时间为2.6875+2.5625=5.25,注意当前请求私海2.6875才返回的,之前一直阻塞;
(4).t=3,因为前一个请求阻塞到2.6875,实际这个请求3.6875才到达RateLimiter,请求1个令牌,storedPermits=0,下一次产生新Permit时间为5.25,因此总共需要等待5.25-3.6875=1.5625秒;

实际执行结果:

warmupPeriodMicros=2000000
stableIntervalMicros=250000.0, maxPermits=8.0, halfPermits=4.0, coldIntervalMicros=750000.0, slope=125000.0, storedPermits=8.0
maxPermits=8.0, storedPermits=8.0, stableIntervalMicros=250000.0, nextFreeTicketMicros=1524
acquire(1), sleepSecond=0.0
maxPermits=8.0, storedPermits=8.0, stableIntervalMicros=250000.0, nextFreeTicketMicros=1001946
acquire(3), sleepSecond=0.0
maxPermits=8.0, storedPermits=5.0, stableIntervalMicros=250000.0, nextFreeTicketMicros=2689446
acquire(10), sleepSecond=0.687186
maxPermits=8.0, storedPermits=0.0, stableIntervalMicros=250000.0, nextFreeTicketMicros=5251946
acquire(1), sleepSecond=1.559174

coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介的更多相关文章

  1. 超详细的Guava RateLimiter限流原理解析

    超详细的Guava RateLimiter限流原理解析  mp.weixin.qq.com 点击上方“方志朋”,选择“置顶或者星标” 你的关注意义重大! 限流是保护高并发系统的三把利器之一,另外两个是 ...

  2. SpringBoot进阶教程(六十七)RateLimiter限流

    在上一篇文章nginx限流配置中,我们介绍了如何使用nginx限流,这篇文章介绍另外一种限流方式---RateLimiter. v限流背景 在早期的计算机领域,限流技术(time limiting)被 ...

  3. 漏桶、令牌桶限流的Go语言实现

    限流 限流又称为流量控制(流控),通常是指限制到达系统的并发请求数. 我们生活中也会经常遇到限流的场景,比如:某景区限制每日进入景区的游客数量为8万人:沙河地铁站早高峰通过站外排队逐一放行的方式限制同 ...

  4. RateLimiter 限流

    @RestControllerpublic class RateLimiterController { private RateLimiter rateLimiter = RateLimiter.cr ...

  5. 基于Redis的限流系统的设计

    本文讲述基于Redis的限流系统的设计,主要会谈及限流系统中限流策略这个功能的设计:在实现方面,算法使用的是令牌桶算法来,访问Redis使用lua脚本.   1.概念 In computer netw ...

  6. .NET服务治理之限流中间件-FireflySoft.RateLimit

    概述 FireflySoft.RateLimit自2021年1月发布第一个版本以来,经历了多次升级迭代,目前已经十分稳定,被很多开发者应用到了生产系统中,最新发布的版本是3.0.0. Github:h ...

  7. 使用springcloud gateway搭建网关(分流,限流,熔断)

    Spring Cloud Gateway Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 ...

  8. Spring Cloud(7):Zuul自定义过滤器和接口限流

    上文讲到了Zuul的基本使用: https://www.cnblogs.com/xuyiqing/p/10884860.html 自定义Zuul过滤器: package org.dreamtech.a ...

  9. ASP.NET Core中使用漏桶算法限流

    漏桶算法是限流的四大主流算法之一,其应用场景各种资料中介绍的不多,一般都是说应用在网络流量控制中.这里举两个例子: 1.目前家庭上网都会限制一个固定的带宽,比如100M.200M等,一栋楼有很多的用户 ...

随机推荐

  1. 从头认识js-HTML中使用JavaScript

    <script>元素 在HTML页面中插入Javascript的主要办法就是使用<script>元素,HTML4.01为<script>定义了下列6个属性. 1.a ...

  2. 【技巧】歪脑筋优化flexbox瀑布流布局方案

    效果先行 需求 在大量"不定宽"元素并排的布局模式下,上图是我们想要的最佳布局但是FlexBox布局虽然枪弹但并不能完全呈现以上布局,于是我们需要结合FlexBox作下小的改动即可 ...

  3. 内网渗透之跨边界传输 - 反弹shell

    大年初一,当然是更一篇重磅文章啦 反弹shell /bin目录下带sh的都是shell nc 1.正向连接,目标机监听自身端口,攻击机主动建立连接 目标机:nc -lvvp 端口 -e /bin/ba ...

  4. Python实现对excel的操作

    1.操作excel使用第三方库openpyxl安装:pip install openpyxy引入:import openpyxl2.常用简单操作1)打开excel文件获取工作簿wb = openpyx ...

  5. turtle学习笔记

    1.turtle的绘图窗体 turtle.setup(width, height, startx,starty) - setup()设置窗体大小及位置- 4个参数中后两个可选(后两个省略时默认窗口在屏 ...

  6. Linux查看目录树形结构

    安装tree. yum -y install tree 查看是否安装成功 yum list installed tree 执行tree命令查看目录树形结构 tree

  7. Asp.net 的DropDownList 控件动态加载

    在做连接数据库表,在页面上用DropDownList 下拉框查询某条数据时,因为数据库里的数据,随时都有可能增加或减少,而下拉框关联的某个字段的值并不一定是固定的. 表信息: CREATE TABLE ...

  8. sql 语句系列(多表之链)[八百章之第三章]

    新增连接查询而不影响其他连接查询 请看图: 这种情况我们一般会使用左连接的方式. select e.ENAME,d.LOC,eb.RECEIVED from emp e join dept d on( ...

  9. 【Springboot】用Prometheus+Grafana监控Springboot应用

    1 简介 项目越做越发觉得,任何一个系统上线,运维监控都太重要了.关于Springboot微服务的监控,之前写过[Springboot]用Springboot Admin监控你的微服务应用,这个方案可 ...

  10. 114 Flatten Binary Tree to Linked List [Python]

    114 Flatten Binary Tree to Linked List Given a binary tree, flatten it to a linked list in-place. 将二 ...