模块 heapq_堆排序
_heapq_堆排序
该模块提供了堆排序算法的实现。堆是二叉树,最大堆中父节点大于或等于两个子节点,最小堆父节点小于或等于两个子节点。
创建堆
heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构
import heapq
# 第一种
"""
函数定义:
heapq.heappush(heap, item)
- Push the value item onto the heap, maintaining the heap invariant.
heapq.heappop(heap)
- Pop and return the smallest item from the heap, maintaining the heap invariant.
If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0].
"""
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆
print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
# 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
heapq 模块还有一个heapq.merge(*iterables)
方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。
类似于sorted(itertools.chain(*iterables))
,但返回的是可迭代的。
"""
函数定义:
heapq.merge(*iterables)
- Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an iterator over the sorted values.
- Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).
"""
import heapq
num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2)
res = heapq.merge(num1, num2)
print(list(res))
访问堆内容
堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。
import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums)
print(heapq.heappop(nums))
# out: 2
# 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]
如果需要删除堆中最小元素并加入一个元素,可以使用heapq.heaprepalce()
函数
import heapq
nums = [1, 2, 4, 5, 3]
heapq.heapify(nums)
heapq.heapreplace(nums, 23)
print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]
获取堆最大或最小值
如果需要获取堆中最大或最小的范围值,则可以使用heapq.nlargest()
或heapq.nsmallest()
函数
"""
函数定义:
heapq.nlargest(n, iterable[, key])¶
- Return a list with the n largest elements from the dataset defined by iterable.
- key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
- Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
import heapq
nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums))
"""
输出:
[5, 4, 3]
[1, 2, 3]
"""
这两个函数还接受一个key参数,用于dict或其他数据结构类型使用
import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)
"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""
heapq应用
实现heap堆排序算法
>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
该算法和sorted(iterable)
类似,但是它是不稳定的。
堆的值可以是元组类型,可以实现对带权值的元素进行排序。
>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')
模块 heapq_堆排序的更多相关文章
- [PY3]——heap模块 和 堆排序
heapify( ) heapify()函数用于将一个序列转化为初始化堆 nums=[16,7,3,20,17,8,-1] print('nums:',nums) show_tree(nums) nu ...
- 算法 排序NB二人组 堆排序 归并排序
参考博客:基于python的七种经典排序算法 常用排序算法总结(一) 序前传 - 树与二叉树 树是一种很常见的非线性的数据结构,称为树形结构,简称树.所谓数据结构就是一组数据的集合连同它们的储 ...
- day39 算法基础
参考博客: http://www.cnblogs.com/alex3714/articles/5474411.html http://www.cnblogs.com/wupeiqi/articles/ ...
- [PY3]——实现一个优先级队列
import heapq class PriorityQueue: def __init__(self): self._queue=[] self._index=0 def push(self,ite ...
- python 冒泡排序,快排
一.冒泡排序 1.1.冒泡的原理 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的 ...
- Python常用数据结构之heapq模块
Python数据结构常用模块:collections.heapq.operator.itertools heapq 堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小 ...
- python下实现二叉堆以及堆排序
python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆 ...
- 使用deque模块固定队列长度,用headq模块来查找最大或最小的N个元素以及实现一个优先级排序的队列
一. deque(双端队列) 1. 使用 deque(maxlen=N)会新建一个固定大小的队列.当新的元素加入并且这个队列已满的时候,最老的元素会自动被移除掉 >>> from c ...
- NB二人组(一)----堆排序
堆排序前传--树与二叉树简介 特殊且常用的树--二叉树 两种特殊的二叉树 二叉树的存储方式 二叉树小结 堆排序 堆这个玩意....... 堆排序过程: 构造堆: 堆排序的算法程序(程序需配合着下图理 ...
随机推荐
- 7-9 jmu-python-异常-学生成绩处理专业版 (25 分)
小明在帮助老师统计成绩,老师给他的是一组数据.数据的第1行代表学生数n,后面的n行代表每个学生的成绩.成绩是整数类型.小明编写了一个程序,该程序可以批量处理数据,统计所有学生的平均分.当数据没有任何错 ...
- RuntimeError: No application found. Either work inside a view function or push an application context.
记录: 遇到这种报错信息: 在create_all()生成数据表的时候,添加app=app,指明app对象即可-----> create_all(app=app)
- web页面上展示图片时,图片不显示,报错:ERR_CONTENT_LENGTH_MISMATCH
问题描述 前端页面加载css,和js文件的时候,经常出现ERR_CONTENT_LENGTH_MISMATCH的报错情况. 查找问题 在单独打开hearder中css,js的网络地址是能打开的 ...
- React的组件
React的组件化思想尤为明显,一切皆组件,觉着比Vue的组件化思想更加凸显. const PacketBG = (props) =>( <div className="pack ...
- springmvc与swagger2
首先呢我们导入相关的jar包文件 为了方便copy我copy一份 <!-- 导入java ee jar 包 --> <dependency> ...
- 最简单的???ubuntu 通过crontab定时执行一个程序
crontab在liunx系统中下载,我默认是认为下载安装了的.. crontab貌似只能在liunx系统中存在,如果是windows系统我不知道 创建一个名为jiaoben的文件夹存储sh文件,进入 ...
- 一文搞懂 Elasticsearch 之 Mapping
这篇文章主要介绍 Mapping.Dynamic Mapping 以及 ElasticSearch 是如何自动判断字段的类型,同时介绍 Mapping 的相关参数设置. 首先来看下什么是 Mappin ...
- node 微信支付
基于node 实现微信支付功能 需要了解的网站:微信支付 流程图: 1. 1.我的路由: const Koa = require('koa') const app = new Koa() const ...
- require.context('.', true, /\.router\.js/) webpack 编译的时候读取目录文件
const routerList = [] function importAll (r) { r.keys().map(value => { r(value).default.map(item ...
- chrome DevTools 里面 css样式里面 勾上 :hover 会将鼠标移上的效果一直保持,技巧:要在鼠标上的 div上 勾 :hover
chrome DevTools 里面 css样式里面 勾上 :hover 会将鼠标移上的效果一直保持,技巧:要在鼠标上的 div上 勾 :hover