TensorFlow 实战卷积神经网络之 LeNet
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!
LeNet
项目简介
1994 年深度学习三巨头之一的 Yan LeCun 提出了 LeNet 神经网络,这是最早的卷积神经网络。1998 年 Yan LeCun 在论文 “Gradient-Based Learning Applied to Document Recognition” 中将这种卷积神经网络命名为 “LeNet-5”。LeNet 已经包含了现在卷积神经网络中的卷积层,池化层,全连接层,已经具备了卷积神经网络必须的基本组件。
Gradient-Based Learning Applied to Document Recognition
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=726791
Architecture of LeNet-5 (Convolutional Neural Networks) for digit recognition
数据处理
同卷积神经网络中的 MNIST 数据集处理方法。
TensorFlow 卷积神经网络手写数字识别数据集介绍
http://www.tensorflownews.com/2018/03/26/tensorflow-mnist/
模型实现
经典的卷积神经网络,TensorFlow 官方已经实现,并且封装在了 tensorflow 库中,以下内容截取自 TensorFlow 官方 Github。
models/research/slim/nets/lenet.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/lenet.py
import tensorflow as tf
slim = tf.contrib.slim
def lenet(images, num_classes=10, is_training=False,
dropout_keep_prob=0.5,
prediction_fn=slim.softmax,
scope='LeNet'):
end_points = {}
with tf.variable_scope(scope, 'LeNet', [images]):
net = end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
net = end_points['pool1'] = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
net = end_points['conv2'] = slim.conv2d(net, 64, [5, 5], scope='conv2')
net = end_points['pool2'] = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
net = slim.flatten(net)
end_points['Flatten'] = net
net = end_points['fc3'] = slim.fully_connected(net, 1024, scope='fc3')
if not num_classes:
return net, end_points
net = end_points['dropout3'] = slim.dropout(
net, dropout_keep_prob, is_training=is_training, scope='dropout3')
logits = end_points['Logits'] = slim.fully_connected(
net, num_classes, activation_fn=None, scope='fc4')
end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
return logits, end_points
lenet.default_image_size = 28
def lenet_arg_scope(weight_decay=0.0):
"""Defines the default lenet argument scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
activation_fn=tf.nn.relu) as sc:
return sc
模型优化
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!
TensorFlow 实战卷积神经网络之 LeNet的更多相关文章
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- TensorFlow实现卷积神经网络
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- Tensorflow之卷积神经网络(CNN)
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...
- Python之TensorFlow的卷积神经网络-5
一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
- 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...
- 卷积神经网络之LeNet
开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构 ...
- 跟我学算法-tensorflow 实现卷积神经网络
我们采用的卷积神经网络是两层卷积层,两层池化层和两层全连接层 我们使用的数据是mnist数据,数据训练集的数据是50000*28*28*1 因为是黑白照片,所以通道数是1 第一次卷积采用64个filt ...
随机推荐
- C++走向远洋——25(项目二,游戏类)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:game.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- USB小白学习之路(2)端点IN/OUT互换
端点2(out)和端点6(in)的out_in互换 注:这里的out和in都是以host为标准说的,out是host的out,在设备(Cy7c68013)这里其实是输入端口:in是host的in,在设 ...
- NLP(二十二)利用ALBERT实现文本二分类
在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此 ...
- 字符串匹配算法 之BF、KMP
示例: 1. 已知字符串str1="acabaabaabcacaabc",求str2="abaabcac"是否在字符串str1中? 2. DNA病毒检测.已知患 ...
- 使用QT绘制一个多边形
目录 1. 概述 2. 实现 2.1. 代码 2.2. 解析 3. 结果 1. 概述 可以通过QT的重绘事件和鼠标事件来绘制多边形,最简单的办法就是在继承QWidget的窗体中重写paintEvent ...
- 优雅的创建一个JavaScript库
这篇文章的目的是通过演示一个简单的例子来介绍在JS中实例化和定义一个库的正确方法,以优化他人编写或维护自己的JS库. 在我们深入之前,我做了两点假设: 你知道简单的JavaScript或C语言. 你不 ...
- Django中的session的使用
一.Session 的概念 cookie 是在浏览器端保存键值对数据,而 session 是在服务器端保存键值对数据 session 的使用依赖 cookie:在使用 Session 后,会在 Coo ...
- Mac结合Docker开发
Mac结合Docker开发 前几天在看Java并发实战时,在Mac上写了一个示例,结果运行后无法按照书本上运行.主要是有些命令,在Mac和Linux是有区别的,比如top, Mac上是不支持-Hp,意 ...
- 2020最新ArchLinux安装(KDE桌面)
许多网友反映之前的教程安装好后连不上互联网,最近我刚好又安装了一遍,总结出以下没毛病的过程 按照此教程需要你会基本的vim操作(或其他文本编辑工具比如nano),基本的fdisk分盘操作(或其他分盘工 ...
- Navicat for MySQL12破解
本文摘抄自:https://blog.csdn.net/zhangli0910/article/details/83785147,https://blog.csdn.net/mmake1994/art ...