组合数学之Pólya计数理论
1 群
群$(G, cdot)$: 闭合, 结合律, 幺元, 逆
1.1 置换群
置换为双射$pi:[n]to [n]$, 置换之间的操作符 $cdot$ 定义为函数的复合, 即$(pi cdot sigma)(i)=pi(sigma(i))$
对称群$S_n$
$S_n$表示$[n]$的所有置换的集合. 容易验证$S_n$和函数复合操作 $cdot$ 构成一个群, 称为$n$元对称群.
$S_n$的子群称为置换群.
循环群$C_n$
定义特殊的置换$sigma$满足$forall i, ~sigma(i)=(i+1)mod n$, $C_n={sigma^t|tge 0}$, $C_n$称为$n$阶循环群, 生成元为$sigma$, 是$n$边正多边形的旋转对称.
Dihedral群$D_n$
定义特殊置换$rho$满足$forall iin [n], ~rho(i)=n-i-1$. 把$rho$加入$C_n$则得到Dihedral群$D_n$. 为正$n$边形翻转和旋转操作的对称群
Cycle decomposition
将置换等价表示为cycle的复合
1.2 群操作
例子: 项链上色
问题: $n$个珠子的项链, 珠子每个是$m$种颜色之一. 形式化的为$x:[n]to[m]$, 即把$m$个颜色分配给$n$个位置. $X={x:[n]to[m]}$为这样的分配的集合.
考虑两种对称操作:
- 旋转: 循环群$C_n$
- 旋转和翻转: dihedral群$D_n$
项链的操作被描述为$X$上的群操作. 对于置换群$G$, 任意$pi in G$和$xin X$, 群操作$picirc x$定义为$(pi circ x)(i)=x(pi(i))$
2 Burnside’s Lemma
2.1 轨道(Orbits)
定义和性质如下:
可以把轨道理解为一个等价类, 同一等价类中的元素可以通过$G$中的操作相互转换.
2.2 invariant set and stabilizer
$G$: 作用于集合$X$上的置换群. $piin G$, $xin X$.
- $pi$的invariant set: $X_pi ={xin X|picirc x=x}$
- $x$的stabilizer: $G_x={piin G|pi circ x=x}$
引理:
证明:
$Gx={x_1,x_2,cdots, x_t}$, $P={pi_1,pi_2,cdots, pi_t}$, 其中$pi_icirc x=x_i, ~ i = 1,2,cdots, t$
构造一个$G$和$Ptimes G_x$的双射:
- 对于任意$piin G$, 对于某个$x_i$有$picirc x=x_i$
- 因为$pi_icirc x=x_i$, 所以$pi_icirc x=picirc x$, 故$(pi_i^{-1}cdot pi)circ x=x$
- 记$sigma=pi_i^{-1}pi$, 则$pi_icdot sigma =pi$, $sigma circ x=x$, 即$sigma in G_x$.
- 因此每个$piin 大专栏 组合数学之Pólya计数理论G$对应一个不同的pair$(pi_i, sigma)in Ptimes G_x$
- 对于每个$pi_iin P$和$sigmain G_x$, 有$pi=pi_icdot sigmain G$
对于$pi_isigma=pi_jtau$, 有$(pi_icdot sigma)circ x=x_i$, $(pi_jcdot tau)circ x=x_j$, 所以$x_i=x_j$, $pi_i=pi_j$, $tau =sigma$
因此是双射, 得证.
2.3 轨道计数
Burnside’s Lemma: 轨道的个数(记做$|X/G|$) 为
证明:
记$A(pi, x)=begin{cases}1 & picirc x=x,\0& ~ otherwise. end{cases}$
$sum_{piin G}|X_pi|=sum_{piin G}sum_{xin X}A(pi, x)=sum_{xin X}sum_{piin G}A(pi, x)=sum_{xin X}|G_x|$.
定义轨道为$X_1,cdots, X_{|X/G|}, 则$
使用上面的引理, 有
3 Pólya’s Theory of Counting
3.1 The cycle index
对于某种上色$x$, 如果$x$在$piin G$下是不变的, 那么在$pi$的每个circle中的所有位置必须有相同颜色. 即如果$pi$被分解为$k$个circle, 那么$|X_pi|=m^k$.
定义一个置换群$G$中的cycle index:
对任意$piin G$, 如果$pi$是$k$个cycle的乘积, 且第$i$个cycle的长度为$l_i$,令
$G$的cycle index为
3.2 Pólya’s enumeration formula
对于任意tuple $v=(n_1,n_2,cdots, n_m)$满足$n_1+n_2+cdots+n_m=n$和$n_ige 0, ~ 1le ile m$, 表示第$i$个颜色的珠子有$n_i$个.
pattern inventory:
$a_v$的多元生成函数
Pólya’s enumeration formula:
非等价的$n$个物体的$m$色上色的pattern inventory为
证明思路如下:
$X^v={x:[n]to[m]|forall iin [m], x^{-1}(i)=n_i}$表示第$i$个颜色出现$n_i$的着色方案集合(所有都算, 对称的也算)
$X_pi^v={xin X^v|picirc x=x}$
先(用Burnside’s lemma)证明
再证明
考虑中间值$(y_1^{l_1}+y_2^{l_1}+cdots,y_m^{l_1})y_1^{l_2}+y_2^{l_2}+cdots,y_m^{l_2})cdots (y_1^{l_m}+y_2^{l_m}+cdots,y_m^{l_m})$, 和等式左右都相等.
合起来即证毕.
组合数学之Pólya计数理论的更多相关文章
- 组合数学(Pólya计数原理):UvaOJ 10601 Cubes
Cubes You are given 12 rods of equal length. Each of them is colored in certain color. Your task is ...
- 【等价的穿越】Burnside引理&Pólya计数法
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
- 《程序设计中的组合数学》——polya计数
我们在高中的组合数学中常常会碰到有关涂色的问题,例如:用红蓝两种颜色给正方形的四个顶点涂色,会有几种不同的方案.在当时,我们下意识的认为,正方形的四个顶点是各不相同的,即正方形是固定的.而实际上我们知 ...
- Pólya计数定理
我日啊..被cls的计数题虐得欲仙欲死...根本不会计数QAQ... 不懂数学啊... 前置技能 群 群是二元组\((G,*)\),满足 \(*:(G,G)\rightarrow G\) \(\exi ...
- 组合数学起步-排列计数[ZJOI2010][BZOJ2111]
<题面> 数据范围:$1 \leq N \leq 10^6, P \leq 10^9 $ 这个题…… 以为是排列,其实是组合 题目中说是从所有排列中找到Magic的,就是 $p_{i/2} ...
- UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)
Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...
- 组合数学之Polya计数 TOJ1116 Let it Bead
1116: Let it Bead Time Limit(Common/Java):1000MS/10000MS Memory Limit:65536KByteTotal Submit: 7 ...
- 组合数学--Polya 原理及典型应用
Redfield-Polya (Pólya enumeration theorem,简称PET)定理是组合数学理论中最重要的定理之一.自从 1927 年 Redfield 首次运用 group red ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
随机推荐
- Go-开发环境搭建
02-开发环境搭建 目录 一 下载地址 二 安装 Linux安装 Windows安装 Mac安装 三 测试安装 四 命令介绍 基本介绍 build 和 run 命令 get 命令 一 下载地址 安 ...
- swoole使用异步redis
1.lnmp安装redis拓展 wget http://download.redis.io/releases/redis-4.0.9.tar.gz chmod 755 redis-4.0.9.tar. ...
- CF 1130C Connect
链接:https://codeforces.com/contest/1130/problem/C C. Connect time limit per test 1 second memory limi ...
- redis简单了解与简单使用
redis数据库 为什么要学习redis """ 1.redis是内存 no-sql 数据库,相比mysql等硬盘数据库效率高 2.在内存值配置数据库使用,而不直接使用内 ...
- RDD(二)——创建
RDD的创建 1)从内存中创建 从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD val raw: RDD[Int] = sc.parallelize(1 to ...
- Spring Boot 默认的指标数据从哪来的?
了解有关 Spring Boot 默认指标及其来源的更多信息. 您是否注意到 Spring Boot 和 Micrometer 为您的应用生成的所有默认指标?如果没有 - 您可以将 actuator ...
- 阿里OSS下载文件,提示The request signature we calculated does not match the signature you provided. Check your key and signing method
提示说是签名不对,但没搞懂签名具体是啥,以为之前做过,有正确的,就一点点比对,最后发现竟然是下载的文件路径,里面必须是/,而不能是\或\\,搞得我哭笑不得.比如,要下载的文件路径是:soft/cszt ...
- 用户界面编程模式 MVC MVP MVVM
用户界面编程模式 MVC MVP MVVM 程序 = 数据 + 算法 数据:就是待处理的东西 算法:就是代码 涉及到人机交互的程序,不可避免涉及到界面和界面上显示的数据原始方式是界面代码和逻辑代码糅合 ...
- Opencv笔记(十七)——轮廓性质
边界矩形的宽高比 x,y,w,h = cv2.boundingRect(cnt) aspect_ratio = float(w)/h Extent Extent就是轮廓面积与边界矩形面积的比. are ...
- windows10系统激活方法
我使用的是第一种方法,很好用,企业版 https://blog.csdn.net/qq_39146974/article/details/82967054