Numpy入门(二):Numpy数组索引切片和运算
在Numpy中建立了数组或者矩阵后,需要访问数组里的成员,改变元素,并对数组进行切分和计算。
索引和切片
Numpy数组的访问模式和python中的list
相似,在多维的数组中使用,
进行区分:
在python的list
下:
a = [1,2,4]
print a[2:]
打印出:
[4]
这是一个数组,在Numpy的多维数组中也采用相同的模式进行数组的访问:
import numpy as np
a = np.arange(1,37)
a = a.reshape(6,6)
print a
打印:
[[ 1 2 3 4 5 6]
[ 7 8 9 10 11 12]
[13 14 15 16 17 18]
[19 20 21 22 23 24]
[25 26 27 28 29 30]
[31 32 33 34 35 36]]
a[1,1] = 8
print a
打印:
[[ 1 2 3 4 5 6]
[ 7 8 9 10 11 12]
[13 14 15 16 17 18]
[19 20 21 22 23 24]
[25 26 27 28 29 30]
[31 32 33 34 35 36]]
print a[1:4,3:]
打印:
[[10 11 12]
[16 17 18]
[22 23 24]]
在二维数组中较为简单,,
前面是横坐标,,
后面是纵坐标,可以用这种方式推广到多维的数组。
牢记这一点,再看看下面的布尔索引就简单多了:
>>> arr3 = (np.arange(36)).reshape(6,6)
>>> arr3
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
>>> x = np.array([0, 1, 2, 1, 4, 5])
>>> arr3[x == 1]
array([[ 6, 7, 8, 9, 10, 11],
[18, 19, 20, 21, 22, 23]])
>>> arr3[:,x == 1]
array([[ 1, 3],
[ 7, 9],
[13, 15],
[19, 21],
[25, 27],
[31, 33]])
>>>
矩阵的运算
Numpy提供的较多的矩阵运算,可以查看相应的文档,这里介绍几种常见的运算方式来说明如何使用运算。
numpy.sum
对某一维进行求和运算:
import numpy as np
a = np.arange(1,7)
a = a.reshape(2,3)
print a
print np.sum(a)
# 21
#[[1 2 3]
#[4 5 6]]
print np.sum(a,0)
#[5 7 9]
print np.sum(a,1)
#[ 6 15]
同样的运算还用numpy.argmax
, numpy.mean
等。
数组中的运算是对每个元素进行的运算,如:
import numpy as np
a = np.arange(1,7)
a = a.reshape(2,3)
print 2*a
#[[ 2 4 6]
#[ 8 10 12]]
数组的点乘操作:
>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
[2, 2]])
Numpy提供了大量的运算函数,在机器学习中也经常用到,对Numpy的熟悉,以后学起机器学习会轻松很多。
更多教程:阿猫学编程
Numpy入门(二):Numpy数组索引切片和运算的更多相关文章
- Numpy学习二:数组的索引与切片
1.一维数组索引与切片#创建一维数组arr1d = np.arange(10)print(arr1d) 结果:[0 1 2 3 4 5 6 7 8 9] #数组的索引从0开始,通过索引获取第三个元素a ...
- Numpy 笔记: 多维数组的切片(slicing)和索引(indexing)【转】
目录 切片(slicing)操作 索引(indexing) 操作 最简单的情况 获取多个元素 切片和索引的同异 切片(slicing)操作 Numpy 中多维数组的切片操作与 Python 中 lis ...
- 手把手numpy教程【二】——数组与切片
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Numpy专题的第二篇,我们来进入正题,来看看Numpy的运算. 上一篇文章当中曾经提到过,同样大小的数据,使用Numpy的运算速度会 ...
- numpy和pandas的基础索引切片
Numpy的索引切片 索引 In [72]: arr = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]]) In [73]: arr Out[73]: a ...
- 手把手golang教程【二】——数组与切片
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是golang专题的第五篇,这一篇我们将会了解golang中的数组和切片的使用. 数组与切片 golang当中数组和C++中的定义类似, ...
- 3.2Python数据处理篇之Numpy系列(二)--- ndarray数组的创建与变换
目录 (一)ndarray数组的创建 1.从列表以元组中创建: 2.使用函数创建: (二)ndarray数组的变换 1.维度的变换: 2.类型的变换: 目录: 1.ndarray数组的创建 2.nda ...
- 1、PHP入门二维数组与循环
<?php $two=array(array(2,3),1=>array(1,2,3),2=>array(4,5,6)); echo $two[1][0];//输出1 echo $t ...
- numpy - 数组索引
numpy 数组索引 一.单个元素索引 一维数组索引 >>> x = np.arange(10) >>> x[2] 2 >>> x[-2] 8 二 ...
- NumPy 学习 第二篇:索引和切片
数组索引是指使用中括号 [] 来定位数据元素,不仅可以定位到单个元素,也可以定位到多个元素.索引基于0,并接受从数组末尾开始索引的负索引. 举个例子,正向索引从0开始,从数组开始向末尾依次加1递增:负 ...
随机推荐
- 洛谷 P5018 对称二叉树
题目传送门 解题思路: 先计算每个点的子树有多少节点,然后判断每个子树是不是对称的,更新答案. AC代码: #include<iostream> #include<cstdio> ...
- linux安装nginx步骤
转载自:https://blog.csdn.net/t8116189520/article/details/81909574,修改部分内容 本文已收录至博客专栏linux安装各种软件及配置环境教程中 ...
- nginx反代及后端web配置
一.反代配置,proxy_pass指向的upstream需要在反代的nginx.conf中配置 server {access_log /home/nginx/front_access.log;erro ...
- Web前端学习方向
第一部分 HTML 第一章 职业规划和前景 职业方向规划定位: web前端开发工程师 web网站架构师 自己创业 转岗管理或其他 web前端开发的前景展望: 未来IT行业企业需求最多的人才 结合最新的 ...
- 一种循环buffer结构
最新数据循环在buffer[H] -> buffer[L] 放置,记录最新放置Index,对外接口获取数据时,进行两次数据拷贝,Index-H ,index-L 拷贝到数组里
- 2.windows-oracle实战第二课 -用户管理
创建用户:在oracle中创建一个用户有create user语句,一般是具有dba(数据库管理员)的权限才能使用.用户创建在所在的实例数据库中. 给用户修改密码:passw 给别人修改密码需要dba ...
- Linux实验总结(第二周)
测试一--vi 每个.c一个文件,每个.h一个文件,文件名中最好有自己的学号 用Vi输入图中代码,并用gcc编译通过 在Vi中使用K查找printf的帮助文档 提交vi编辑过程截图,要全屏,包含自己的 ...
- You are attempting to install the android sdk inside your android studio installation
原因 我的android studio文件名为AndroidStudio 我的android studio sdk文件名为AndroidStudioSDK 所以系统把AndroidStudioSDK自 ...
- 直播弹幕抓取逆向分析流程总结 websocket,flash
前端无秘密 直播的逆向抓取说到底是前端的调试和逆向技术,加上部分的dpa(深入包分析,个人能力尚作不到深入,只能作简单分析)难度较低 目前互联网直播弹幕主要是两种技术实现. 1websocket消息通 ...
- Exynos4412开发板-网络-同一网段
1.1 同一网段在不少实验中,都会需要用到局域网的一些基础知识,在技术支持的过程中,发现不少用户对于这个概念非常模糊,导致 IP 地址或者网络环境稍微有点变化,就无法实现实验.如果没有接触过这个概念, ...