poj2125最小点权覆盖+找一个割集
Time Limit: 2000MS | Memory Limit: 65536K | |||
Total Submissions: 8503 | Accepted: 2753 | Special Judge |
Description
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.
Find out what minimal sum Bob needs to remove all arcs from the graph.
Input
Output
Sample Input
3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3
Sample Output
5
3
1 +
2 -
2 + 主要是找割边。
有构造出来的图知道这个是个二部图加两个源点汇点,二部图之间的连边不可能是割边(INF),所以就dfs(S)然后用vis标记,那么vis[S]一定是1,并且vis[T]一定是0.因为S,T不可能在一个集合里
那么从源点处找一下和它相连的边,看vis[]是不是0,是的话就是割边。
然后从汇点处找一下和它相连的边,看vis[]是不是1,是的话就是割边。
因为是个二部图所以不用dfs直接找一次就可以了
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
const int INF=1e9+;
int head[N],tot,S,T;
int q[N],dis[N],n,m,Q;
bool vis[N];
struct node
{
int next,v,w;
} e[M<<];
void add(int u,int v,int w)
{
e[tot].v=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
bool bfs()
{
memset(dis,-,sizeof(dis));
dis[S]=;
int l=,r=;
q[r++]=S;
while(l<r)
{
int u=q[l++];
for(int i=head[u]; ~i; i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-&&e[i].w>)
{
q[r++]=v;
dis[v]=dis[u]+;
if(v==T) return true;
}
}
}
return false;
}
int dfs(int s,int low)
{
if(s==T||!low) return low;
int ans=low,a;
for(int i=head[s]; ~i; i=e[i].next)
{
if(e[i].w>&&dis[e[i].v]==dis[s]+&&(a=dfs(e[i].v,min(e[i].w,ans))))
{
e[i].w-=a;
e[i^].w+=a;
ans-=a;
if(!ans) return low;
}
}
if(low==ans) dis[s]=-;
return low-ans;
}
void dfs(int u){
vis[u]=;
for(int i=head[u];~i;i=e[i].next) if(!vis[e[i].v]&&e[i].w) dfs(e[i].v);
}
int a[N],b[N];
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
S=,T=*n+;
int x,f,t;
memset(head,-,sizeof(head));
tot=;
for(int i=; i<=n; ++i)
{
scanf("%d",&x);
add(S,i,x);
add(i,S,);
}
for(int i=; i<=n; ++i)
{
scanf("%d",&x);
add(i+n,T,x);
add(T,i+n,);
}
while(m--)
{
scanf("%d%d",&f,&t);
add(t,f+n,INF);
add(f+n,t,);
}
int ans=;
while(bfs()) ans+=dfs(S,INF);
printf("%d\n",ans);
dfs(S);
int ct1=,ct2=;
for(int i=head[S];~i;i=e[i].next) if(!vis[e[i].v]) a[ct1++]=e[i].v;
for(int i=head[T];~i;i=e[i].next) if(vis[e[i].v]) b[ct2++]=e[i].v-n;
printf("%d\n",ct1+ct2);
for(int i=;i<ct1;++i) printf("%d +\n",a[i]);
for(int i=;i<ct2;++i) printf("%d -\n",b[i]); }
}
poj2125最小点权覆盖+找一个割集的更多相关文章
- poj2125 最小点权覆盖集
题意:有一张图,对于每个点,有出边和入边,现在目的是删除改图的所有边,对于每个点,删除出边的花费Wi-,删除入边的花费Wi+,现在的目的求删去所有边后的花费最小. 建图方法:对于每个点i,拆点为i,i ...
- POJ2125 Destroying The Graph(二分图最小点权覆盖集)
最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...
- POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)
Destroying The Graph Time Limit: 2000MS Memo ...
- POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割
思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- [学习笔记]最小割之最小点权覆盖&&最大点权独立集
最小点权覆盖 给出一个二分图,每个点有一个非负点权 要求选出一些点构成一个覆盖,问点权最小是多少 建模: S到左部点,容量为点权 右部点到T,容量为点权 左部点到右部点的边,容量inf 求最小割即可. ...
- POJ 2125 最小点权覆盖集(输出方案)
题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- POJ 3308 Paratroopers (对数转换+最小点权覆盖)
题意 敌人侵略r*c的地图.为了消灭敌人,可以在某一行或者某一列安置超级大炮.每一个大炮可以瞬间消灭这一行(或者列)的敌人.安装消灭第i行的大炮消费是ri.安装消灭第j行的大炮消费是ci现在有n个敌人 ...
随机推荐
- javescrip内嵌样式与外联样式怎么做?
对于前端初学者,个人JS样式常用的有两种:内嵌样式 ,外联样式:下面通过一个简单的鼠标点击出现设定的验证数字为例进行演示: 先看下效果: 鼠标点击前效果: 鼠标点击后效果: 图中的这个ojbk是我js ...
- js 函数的多图片懒加载(lazy) 带插件版完整解析
前言: 本人纯小白一个,有很多地方理解的没有各位大牛那么透彻,如有错误,请各位大牛指出斧正!小弟感激不尽. 本篇文章为您分析一下原生JS实现图片懒加载效果 页面需求 1 ...
- dispatch_async 的 block 中是否该使用_weak self
问题分析 我看过很多文章关于在dispatch_async的block里面使用_weak self, 但是让我疑惑的是,以下代码是否需要必须使用_weak self, 因为我也看到了很多观点说,在有些 ...
- vue添加,删除内容
vue 提交添加内容,点击删除内容 1 html <input v-model="inputValue" /> <button @click="hand ...
- Linux设备子系统初始化
本文介绍的内容是基于Linux3.1源码,并参考了很多网上找来的资料 Linux内核的启动的流程如下: start_kernel->rest_init->kernel_init->d ...
- LeetCode 62,从动态规划想到更好的解法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第36篇文章,我们一起来看下LeetCode的62题,Unique Paths. 题意 其实这是一道老掉牙的题目了 ...
- python工业互联网应用实战1—SQL与ORM
从sql到ORM应该说也是编程体系逐步演化的结果,通过类和对象更好的组织开个过程中遇到的各种业务问题,面向对象的解耦和内聚作为一套有效的方法论,对于复杂的企业应用而言确实能够解决实践过程中很多问题. ...
- Power Query:非常规工资条
常规工资条为标题.内容.空行,每三行一循环,横向排版.打印.空行填充颜色,方便切割.其中用到函数嵌套,先把table以row转换为list,然后用List.TransformMany生成Table.C ...
- [acdream_oj1732]求1到n的最小公倍数(n<=1e8)
题意:如标题 思路:如果n在10^6以内则可以用o(nlogn)的暴力,题目给定的是n<=1e8,暴力显然是不行的,考虑到1到n的最小公倍数可以写成2^p1*3^p2*5^p3*...这种素数的 ...
- 用python爬了厦门人才网的.net岗位
为了看看.net的就业行情怎么样,用python爬取了厦门人才网.net岗位的信息,话不多说上代码,python没学多久,如果有什么不妥请指正 import requests from bs4 imp ...