AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)
RNNs in Darknet
递归神经网络是表示随时间变化的数据的强大模型。为了更好地介绍RNNs,我强烈推荐Andrej Karpathy去年的博客文章,这是实现RNNs的一个很好的资源!
所有这些模型都使用相同的网络架构,一个包含3个递归模块的普通RNN。
每个模块由3个完全连接的层组成。输入层将信息从输入传播到当前状态。递归层通过时间将信息从上一个状态传播到当前状态。由于我们希望输入层和递归层都影响当前状态,所以我们将它们的输出相加以得到当前状态。最后,输出层将当前状态映射到RNN模块的输出。 网络的输入是一个1-hot编码的ASCII字符。我们训练网络预测字符流中的下一个字符。输出被限制为使用softmax层的概率分布。
由于每个递归层都包含有关当前字符和过去字符的信息,因此它可以使用此上下文来预测单词或短语中的未来字符。随着时间的推移,训练的内容如下:
尽管一次只能预测一个字符,但这些网络可以非常强大。在测试时,我们可以评估给定句子的可能性,也可以让网络自己生成文本!
要生成文本,首先我们通过输入某些字符(如换行符“\n”)或一组字符(如句子)来建立网络。然后,我们将网络输出的最后一个字符作为输入反馈到网络中。由于网络的输出是下一个字符的概率分布,我们可以从给定的分布中提取最可能的字符或样本,但采样往往会产生更有趣的结果。
用Darknet生成文本
首先你应该安装Darknet。因为您不需要CUDA或OpenCV,所以这就像克隆GitHub存储库一样简单:
git clone https://github.com/pjreddie/darknet
cd darknet
make
选择要使用的权重文件后,可以使用以下命令生成文本:
./darknet rnn generate cfg/rnn.cfg <weights>
也可以将各种标志传递给此命令:
-len<int>:更改生成文本的长度,默认为1000
-seed<string>:用给定的字符串为RNN设定种子,默认为“\n”
-srand<int>:为可重复运行的随机数生成器设置种子
-temp<float>:设置采样温度,默认为0.7
要生成此文本,必须下载此权重文件:grrm.weights(36 MB)。然后运行以下命令:
./darknet rnn generate cfg/rnn.cfg grrm.weights -srand 0 -seed JON
您可以更改srand或seed以生成不同的文本,所以请使用wild!我真的希望我不会因此被起诉。。。
OS X上的随机数生成器与Linux上的不同,因此如果运行相同的命令,则会得到不同的输出。
我不打算发布这个模型,但你可以下载自己的松弛日志,并在上面训练一个模型!怎么,你问?继续读。。。。
训练自己的模型
你也可以在新的文本数据上训练自己的模型!训练配置文件是cfg/rnn.train.cfg。训练所需的只是一个文本文件,其中包含所有ASCII格式的数据。然后运行以下命令:
./darknet rnn train cfg/rnn.train.cfg -file data.txt
模型会将定期备份保存到函数train_char_rnn中src/rnn.c中指定的目录,您可能希望将此目录更改为适合您的计算机的位置。要从备份重新开始训练,您可以运行:
./darknet rnn train cfg/rnn.train.cfg backup/rnn.train.backup -file data.txt
如果你想在大量数据上训练大型模型,你可能需要在一个快速的GPU上运行它。你可以在CPU上训练它,但可能需要一段时间,你已经被警告了!
AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)的更多相关文章
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(六)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(六) 1. Tiny Darknet 听过很多人谈论SqueezeNet. SqueezeNet很酷,但它只是优化参数计数.当大多数高 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(四)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(四) Nightmare 从前,在一所大学的大楼里,西蒙尼亚.维达第和齐瑟曼有一个很好的主意,几乎和你现在坐的大楼完全不同.他们想,嘿 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(三)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(三) ImageNet分类 您可以使用Darknet为1000级ImageNet挑战赛分类图像.如果你还没有安装Darknet,你应该 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(二)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(二) 版本3有什么新功能? YOLOv3使用了一些技巧来改进训练和提高性能,包括:多尺度预测.更好的主干分类器等等.全部细节都在我们的 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(一)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(一) Darknet: C语言中的开源神经网络 Darknet是一个用C和CUDA编写的开源神经网络框架.它速度快,易于安装,支持C ...
- mybatis 3.x源码深度解析与最佳实践(最完整原创)
mybatis 3.x源码深度解析与最佳实践 1 环境准备 1.1 mybatis介绍以及框架源码的学习目标 1.2 本系列源码解析的方式 1.3 环境搭建 1.4 从Hello World开始 2 ...
- iScroll框架解析——Android 设备页面内 div(容器,非页面)overflow:scroll; 失效解决(转)
移动平台的活,兼容问题超多,今儿又遇到一个.客户要求在弹出层容器内显示内容,但内容条数过多,容器显示滚动条.按说是So easy,容器设死宽.高,CSS加属性 overflow:scroll; -we ...
- nodejs 实践:express 最佳实践(五) connect解析
nodejs 实践:express 最佳实践(五) connect解析 nodejs 发展很快,从 npm 上面的包托管数量就可以看出来.不过从另一方面来看,也是反映了 nodejs 的基础不稳固,需 ...
- .NET Core 多框架支持(net45+netstandard20)实践中遇到的一些问题总结
.NET Core 多框架支持(net45+netstandard20)实践中遇到的一些问题总结 前言 本文主要是关于.NET Standard 代码 在多框架 和 多平台 支持自己实践过程中遇到的一 ...
随机推荐
- nginx 完美解决tp3.2.3 404问题
最近我把Apache给换成nginx,当我把tp项目搬过去运行的时候发现404 错误 ,原来是因为nginx不支持 pathinfo 模式,需要自己配置 下面我配置 在server配置里面 locat ...
- php文件的自动加载
<?php spl_autoload_register(function ($class_name) { require_once $class_name . '.php'; });
- MS06-040漏洞研究(中)【转载】
课程简介 经过上次的分析,我们已经知道了MS06-040漏洞的本质,那么这次我们就通过编程实现漏洞的利用. 课程介绍 实验环境: 操作机: Windows XP 实验工具: Tools Path ID ...
- MySQL数据库及注入方法
目录 MySQL数据库 mysql中比较常用的一些函数: 判断MySQL数据库是否存在SQL注入 MySQL数据库文件结构 MySQL数据库密码破解 MySQL UDF提权 MySQL数据库 MySQ ...
- Portswigger web security academy:OS command injection
Portswigger web security academy:OS command injection 目录 Portswigger web security academy:OS command ...
- (邹博ML)数学分析与概率论
机器学习入门 深度学习和机器学习? 深度学习在某种意义上可以认为是机器学习的一个分支,只是这个分支非常全面且重要,以至于可以单独作为一门学科来进行研究. 回忆知识 求解S. 对数函数的上升速度 我们使 ...
- 【python】Leetcode每日一题-132模式
[python]Leetcode每日一题-132模式 [题目描述] 给定一个整数序列:a1, a2, ..., an,一个132模式的子序列 ai, aj, ak 被定义为:当 i < j &l ...
- mongodb 在PHP中常见问题及解决方法
1.$in needs an array 解决:查询用到in操作的时候,说in操作对应的不是我一个数组,或者数组索引不是以0开始的 方法:array_values重新生成一个索引为0开始的数组即可 $ ...
- 国家密码标准-商密SM2官方文档整理
SM2官方文档整理 算法原理 SM2算法介绍 我国自主知识产权的商业密码算法,是ECC(椭圆加密算法)的一种,基于椭圆曲线离散对数问题(公钥密码体制所依据的难题主要为大素数分解问题.离散对数问题.椭圆 ...
- 从几道题目带你深入理解Event Loop_宏队列_微队列
目录 深入探究JavaScript的Event Loop Event Loop的结构 回调队列(callbacks queue)的分类 Event Loop的执行顺序 通过题目来深入 深入探究Java ...