题解 \(by\;zj\varphi\)

首先一个点能否选择的条件是 \(dis_{1,x}+dis_{x,n}=dis_{1,n}\)

正解是计算一条道路上的所有为 \(-1\) 边的选择范围,是个一次函数。

但是有一种做法,枚举所有的存在的边权,可以证明若 \(-1\) 边的边权为两个存在的边权之间,那么它的情况一定可以被大的和小的共同覆盖。

\(spfa\) 即可

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++;
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x,char t) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar(t);
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar(t);
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e3+7,INF=1061109567;
map<int,int> mp;
int first[N],wai[N<<1],que[N*100],vis[N],ans[N],W,tot,t=1,n,m;
struct edge{int v,w,nxt;}e[N<<2];
ll disf[N],disr[N];
inline void add(int u,int v,int w) {
e[t].v=v,e[t].w=w,e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].w=w,e[t].nxt=first[v],first[v]=t++;
}
inline void spfaf() {
memset(disf,127,sizeof(ll)*(n+1));
ri hd=1,tl=0;
int x=1;
disf[que[p(tl)]=x]=0;
while(hd<=tl) {
vis[x=que[hd++]]=0;
for (ri i(first[x]),v;i;i=e[i].nxt) {
int w=(e[i].w==-1)?W:e[i].w;
if (disf[v=e[i].v]>disf[x]+w) {
disf[v]=disf[x]+w;
if (!vis[v]) vis[que[p(tl)]=v]=1;
}
}
}
}
inline void spfar() {
memset(disr,127,sizeof(ll)*(n+1));
ri hd=1,tl=0;
int x=n;
disr[que[p(tl)]=x]=0;
while(hd<=tl) {
vis[x=que[hd++]]=0;
for (ri i(first[x]),v;i;i=e[i].nxt) {
int w=(e[i].w==-1)?W:e[i].w;
if (disr[v=e[i].v]>disr[x]+w) {
disr[v]=disr[x]+w;
if (!vis[v]) vis[que[p(tl)]=v]=1;
}
}
}
}
inline void solve(int w) {
W=w;
spfaf(),spfar();
for (ri i(1);i<=n;p(i)) if (disf[i]+disr[i]==disf[n]) ans[i]=1;
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(n),read(m);
for (ri i(1),u,v,w;i<=m;p(i)) {
read(u),read(v),read(w);
if (w!=-1&&mp.find(w)==mp.end()) mp[wai[p(tot)]=w]=1;
add(u,v,w);
}
if (mp.find(0)==mp.end()) wai[p(tot)]=0;
wai[p(tot)]=INF; for (ri i(1);i<=tot;p(i)) solve(wai[i]);
for (ri i(1);i<=n;p(i)) putchar(ans[i]^48);
puts("");
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $24\; \rm graph$的更多相关文章

  1. NOIP 模拟 $24\; \rm block$

    题解 \(by\;zj\varphi\) 因为它要求大于它的且放在它前的数的个数要小于它的 \(key\) 值,所以先按 \(\rm val\) 值排序,然后按 \(\rm key\) 值排序,按顺序 ...

  2. NOIP 模拟 $24\; \rm matrix$

    题解 \(by\;zj\varphi\) 发现 \(\rm n,m\) 都很小,考虑分行状压. 但是上一行和下一行的按钮状态会对当前行造成影响,所以再枚举一个上一行的按钮状态. 因为对于两行,只有如下 ...

  3. 2021.5.24考试总结 [NOIP模拟3]

    带着爆0的心态考的试,没想到整了个假rk2 (炸鱼大佬wtz忒强了OTZ T1 景区路线规划 这题对刚学完概率期望的我来说简直水爆了好吗.. 因为存在时间限制,不好跑高斯消元,就直接跑dp就完了. 令 ...

  4. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  5. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  6. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

  7. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

  8. NOIP模拟 2

    大概就是考试的时候慌的一批,因为一道正解也没想出来,T1,T3只会暴搜,听见天皇在旁边的窃喜声本渣内心是崩溃的 会打暴搜的我先打了暴搜,大多数时间都用在第二题上,妄想自己能拿50多分- 最后半小时万念 ...

  9. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

随机推荐

  1. 流媒体传输协议(rtp/rtcp/rtsp/rtmp/mms/hls)转

    常用的流媒体协议主要有HTTP渐进下载和基于RTSP/RTP的实时流媒体协议两类.在流式传输的实现方案中,一般采用HTTP/TCP来传输控制信息,而用RTP/UDP来传输实时多媒体数据. 1 实时传输 ...

  2. Djiango 连接数据库mysql 的基本数据操作

    1.单表操作 (1) .增加操作 1 # 增加操作 2 def add_person(request): 3 # 1.使用save() 方法 4 # person_obj = models.Perso ...

  3. tr 字符转换命令

    tr:可以用来删除一段信息当中的文字,或者是进行文字信息的替换 语法:tr [parameter] set1 ...参数: -d:删除信息当中的set1这个字符 -s:替换掉重复的字符 举例: 将la ...

  4. 从源码分析Hystrix工作机制

    一.Hystrix解决了什么问题? 在复杂的分布式应用中有着许多的依赖,各个依赖都有难免在某个时刻失败,如果应用不隔离各个依赖,降低外部的风险,那容易拖垮整个应用. 举个电商场景中常见的例子,比如订单 ...

  5. PyCharm代码区不能编辑的解决办法

    问题: 修改之前的Python代码时发现代码区无法编辑,无意中输入i后又可以编辑了. 解决: 原因是打开了工具中的vim Emulator编辑模式,把vim Emulator前面的勾取消即可.

  6. Java异常情况

    从网上了解了这些Java异常,遇到过一些,大部分还没遇到: 1. SQLException:操作数据库异常类. 2. ClassCastException:数据类型转换异常. 3. NumberFor ...

  7. 高校表白App-团队冲刺第六天

    今天要做什么 在引导页的基础上添加小红点,并且在滑动时进行增强用户体验的修饰 做了什么 在布局中成功添加小红点,并在activity中得到实现;滑动在3/4时发生渐变,增强用户体验;滑动可回退;在最后 ...

  8. NDT匹配: The Normal Distributions Transform: A New Approach to Laser Scan

    介绍 大多数激光匹配算法都是基于点或者线的特征匹配,该论文提出一种2D激光扫描匹配算法,方法类似于占据栅格,将2D平面分为一个个cell,对于每个cell,设定其一个正态分布,表示该网格测量到每个点的 ...

  9. ZooKeeper 分布式锁 Curator 源码 03:可重入锁并发加锁

    前言 在了解了加锁和锁重入之后,最需要了解的还是在分布式场景下或者多线程并发加锁是如何处理的? 并发加锁 先来看结果,在多线程对 /locks/lock_01 加锁时,是在后面又创建了新的临时节点. ...

  10. PAT乙级:1088 三人行 (20分)

    PAT乙级:1088 三人行 (20分) 题干 子曰:"三人行,必有我师焉.择其善者而从之,其不善者而改之." 本题给定甲.乙.丙三个人的能力值关系为:甲的能力值确定是 2 位正整 ...