PCA方差解释比例求解与绘图?
主成分方差解释率计算
通常,求得了PCA降维后的特征值,我们就可以绘图,但各个维度的方差解释率没有得到,就无法获得PC坐标的百分比。
有些工具的结果是提供了维度标准差的,如ggbiplot绘图时,直接会给你算出各个坐标的方差解释率。但我觉得这类工具绘图远不如ggplot本身,此时,就需要自己计算。
当理解了PCA的原理和含义后,就比较容易得到。网上一大堆,这里不介绍。
以ggbiplot数据为例,并将算出结果与之比较。
if(!require(devtools))
install.packages("devtools")
library(devtools)
if(!require(ggbiplot))
install_github("vqv/ggbiplot")
library(ggbiplot)
data(wine)
pca <- prcomp(wine, scale. = TRUE)
ggbiplot(pca,
# groups = wine.class,
ellipse = TRUE, circle = TRUE,
obs.scale = 1, var.scale = 1) +
scale_color_discrete(name = '') +
theme(legend.direction = 'horizontal', legend.position = 'top')
R自带函数prcomp的结果中得到PCA的5个对象结果,其中包含了标准差(sdev)和特征向量(x)。
> str(pca)
List of 5
$ sdev : num [1:13] 2.169 1.58 1.203 0.959 0.924 ...
$ rotation: num [1:13, 1:13] -0.14433 0.24519 0.00205 0.23932 -0.14199 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:13] "Alcohol" "MalicAcid" "Ash" "AlcAsh" ...
.. ..$ : chr [1:13] "PC1" "PC2" "PC3" "PC4" ...
$ center : Named num [1:13] 13 2.34 2.37 19.49 99.74 ...
..- attr(*, "names")= chr [1:13] "Alcohol" "MalicAcid" "Ash" "AlcAsh" ...
$ scale : Named num [1:13] 0.812 1.117 0.274 3.34 14.282 ...
..- attr(*, "names")= chr [1:13] "Alcohol" "MalicAcid" "Ash" "AlcAsh" ...
$ x : num [1:178, 1:13] -3.31 -2.2 -2.51 -3.75 -1.01 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:13] "PC1" "PC2" "PC3" "PC4" ...
- attr(*, "class")= chr "prcomp"
手动计算方差解释率:
> pca$sdev^2/sum(pca$sdev^2)*100
#注意平方
[1] 36.1988481 19.2074903 11.1236305 7.0690302 6.5632937 4.9358233
[7] 4.2386793 2.6807489 2.2221534 1.9300191 1.7368357 1.2982326
[13] 0.7952149
可看出,前两个主成分与图中一致。当然如果没有标准差结果,我们也可以根据特征向量计算出来:
> sdev<- apply(pca$x,2,sd)
> sdev
PC1 PC2 PC3 PC4 PC5 PC6 PC7
2.1692972 1.5801816 1.2025273 0.9586313 0.9237035 0.8010350 0.7423128
PC8 PC9 PC10 PC11 PC12 PC13
0.5903367 0.5374755 0.5009017 0.4751722 0.4108165 0.3215244
绘图示例
一个示例,可在此基础上进一步优化。如样本要再分组,可加shape。
ggplot(data=data.frame(pca$x), aes(PC1,PC2)) +
stat_ellipse(aes(fill=wine.class),type="norm",geom="polygon",alpha=0.2,color=NA)+
geom_point(size=2)+
# scale_size(guide=FALSE)+
scale_color_manual(values = col)+
geom_vline(xintercept = 0,linetype="dotted")+
geom_hline(yintercept = 0,linetype="dotted")+
labs(x=paste0("PC1", sprintf("(%0.2f%%)",100*pca$sdev[1]^2/sum(pca$sdev^2))),
y=paste0("PC2", sprintf("(%0.2f%%)",100*pca$sdev[2]^2/sum(pca$sdev^2))))
PCA方差解释比例求解与绘图?的更多相关文章
- PCA降维-最大,最小方差解释
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/ ...
- 主成分分析(Principal components analysis)-最大方差解释
原文:http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html 在这一篇之前的内容是<Factor Analysis> ...
- <转>主成分分析(Principal components analysis)-最大方差解释,最小平方差解释
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/ ...
- ng机器学习视频笔记(二) ——梯度下降算法解释以及求解θ
ng机器学习视频笔记(二) --梯度下降算法解释以及求解θ (转载请附上本文链接--linhxx) 一.解释梯度算法 梯度算法公式以及简化的代价函数图,如上图所示. 1)偏导数 由上图可知,在a点 ...
- PCA原理解释
上图讲述的两组数据,可以看到左图的数据离散度比较大,相关性比较弱,右图数据的相关性比较强:我们在使用PCA的时候,就是要将相关性强的数据进行降维,以减少处理的数据量. 那么怎么描述数据的相关性呢? ...
- PCA原理解释(二)
PCA在做数据处理,一般会有一个数据预处理,其中一个目标就是将取数据特征向相关性. 为什么要去特征的相关性? 因为数据如果有相关性,在学习的时候是冗余的,徒增学习成本:所以对于数据处理(也称之为白化, ...
- PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...
- 机器学习:PCA(高维数据映射为低维数据 封装&调用)
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. ...
- 群体结构图形三剑客——PCA图
重测序便宜了,群体的测序和分析也多了起来.群体结构分析,是重测序最常见的分析内容.群体结构分析应用十分广泛,首先其本身是群体进化关系分析里面最基础的分析内容,其次在进行GWAS分析的时候,本身也需要使 ...
随机推荐
- Coursera Deep Learning笔记 改善深层神经网络:超参数调试 正则化以及梯度相关
笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.cs ...
- 无网络下,配置yum本地源
1. 新建一个没有iso镜像文件的虚拟机: 2. 本地上传一个镜像文件(CentOS7的镜像),到虚拟机已创建的目录: 例如:上传一个镜像文件CentOS-7-x86_64-Everything-17 ...
- [CSP-S2021] 廊桥分配
链接: P7913 题意: 有 \(m_1\) 架飞机和 \(m_2\) 架飞机停在两个机场,每架飞机有到达和离开的时间,要将 \(n\) 个廊桥分给两个机场,每个廊桥同一时刻只能停一架飞机,需要最大 ...
- lollipop_softap启动wifi ap失败
最近一直在调试lollipop,翻译成中文好像是棒棒糖的意思,就是个wifi控制管理工具,比如设置DLNA或者WFD模式等,其原理是通过本地通信工具sockets控制其他接口来启动wpa_suplic ...
- Luogu P2827 [NOIp2016提高组]蚯蚓 | 神奇的队列
题目链接 80分思路: 弄一个优先队列,不停地模拟,切蚯蚓时就将最长的那一条出队,然后一分为二入队,简单模拟即可.还要弄一个标记,表示从开始到当前时间每一条蚯蚓应该加上的长度,操作时就加上,入队时就减 ...
- sed 修改替换包含关键字的整行
查找关键字 user10 所在的行,替换整行内容为aaaaaaaaaa #sed -i "s/^.*user10.*$/aaaaaaaaaa/" useradd.txt
- Redis INFO CPU 信息详解
一.INFO CPU 通过INFO CPU命令可以查看Redis进程对于CPU的使用情况,如下: 这几个字段的含义如下所示: used_cpu_sys: System CPU consumed by ...
- java 雪花算法实现获取分布式id
import java.lang.management.ManagementFactory; import java.net.InetAddress; import java.net.NetworkI ...
- CobaltStrike上线Linux
为获得最佳的阅读体验,请访问我的个人主页: https://xzajyjs.cn/ 在红蓝对抗中,我们常需要对目标进行长时间的控制,cobaltstrike原生对于上线windows比较轻松友好,但如 ...
- java中的lamda表达式
List操作: 循环: list.forEach((p) -> System.out.printf("%s %s; %n", p.getFirstName(), p.getL ...