洛谷 P4183 - [USACO18JAN]Cow at Large P(点分治)
点分治 hot tea。
首先考虑什么样的点能够对以 \(u\) 为根的答案产生 \(1\) 的贡献。我们考虑以 \(u\) 为根对整棵树进行一遍 DFS。那么对于一个点 \(v\),我们记其 \(mn_v\) 为其子树内距离其最近的叶子,\(dep_v\) 为 \(u\) 到 \(v\) 的距离,那么如果 \(mn_v\ge dep_v\),那么对于任何一个 \(v\) 子树内的叶子 \(w\),如果 Bessie 选择从 \(w\) 逃出且我们在距离 \(v\) 最近的叶子处放上一个看守者,那么在 \(v\) 处的看守者必然能够在 Bessie 到达 \(w\) 之前把 Bessie 截住。并且根据贪心的原理,只有当如果 \(v\) 的父亲 \(fa_v\) 不符合 \(mn_{fa_v}\ge dep_{fa_v}\) 时我们才会选择在距离 \(v\) 最近的叶子,并且这样的点必须被选,否则 \(v\) 子树内的点就堵不住了。因此一个点 \(v\) 产生条件的必要条件是 \(mn_v\ge dep_v\land mn_{fa_v}<dep_{fa_v}\)。那这是否充分了呢?或者说是否会存在某个叶子,满足两个产生贡献的点都选到这个点。答案是否定的,因为如果存在两个点 \(v_1,v_2\),满足距离它们最近的叶子相同,并且 \(mn_{v_1}\ge dep_{v_1},mn_{v_2}\ge dep_{v_2}\) 均成立,那么必然有它们的 LCA 也符合要求。因此对于一个 \(u\),满足条件的 \(v\) 的个数就是
\]
注意到这里涉及两个维度,如果硬要上个点分治那需要三位偏序,非常麻烦。不过注意到对于一个点,如果其满足第一个限制,那么它的子树也满足这个限制。那么怎样让每个子树的贡献都只算一次呢?考虑一个大小为 \(x\) 的子树 \(S\),由于该子树中深度最浅的节点上面还连了条边,因此该节点中所有点的度 \(d_v\) 之和等于 \(2x-1\),移个项可得 \(\sum\limits_{v\in S}2-d_v=1\),因此上式等价于
\]
这东西就一脸可以点分治的样子了,考虑对于一个 \(u\) 以及一个与其不在一个分治中心儿子子树内的点 \(v\),那么记 \(dep_u\) 为 \(u\) 到分治中心的距离,那么限制可转化为 \(mn_v\ge dep_u+dep_v\),移个项可得 \(mn_v-dep_v\ge dep_u\),BIT 维护即可,时间复杂度 \(n\log^2n\)。
const int MAXN=7e4;
const int INF=0x3f3f3f3f;
int n,deg[MAXN+5],hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int mx[MAXN+5],cent=0,siz[MAXN+5];bool vis[MAXN+5];
int mndep[MAXN+5],mnout[MAXN+5],mn[MAXN+5];
void dfs1(int x,int f){
mndep[x]=(deg[x]==1)?0:INF;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
dfs1(y,x);chkmin(mndep[x],mndep[y]+1);
}
}
void dfs2(int x,int f){
multiset<int> st;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];
if(y==f) st.insert(mnout[x]);
else st.insert(mndep[y]+1);
}
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
if(deg[x]==1) mnout[y]=1;
else{
st.erase(st.find(mndep[y]+1));
mnout[y]=(*st.begin())+1;
st.insert(mndep[y]+1);
} dfs2(y,x);
}
}
void findcent(int x,int f,int tot){
siz[x]=1;mx[x]=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||vis[y]) continue;
findcent(y,x,tot);siz[x]+=siz[y];chkmax(mx[x],siz[y]);
} chkmax(mx[x],tot-siz[x]);
if(mx[x]<mx[cent]) cent=x;
}
int dep[MAXN+5];
void getdep(int x,int f){
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]||y==f) continue;
dep[y]=dep[x]+1;getdep(y,x);
}
}
ll t[MAXN*2+5],res[MAXN+5];
void add(int x,int v){x+=n+1;for(int i=x;i<=(n<<1|1);i+=(i&(-i))) t[i]+=v;}
ll query(int x){x+=n+1;ll ret=0;for(int i=x;i;i&=(i-1)) ret+=t[i];return ret;}
vector<int> pt;
void getpts(int x,int f){
pt.pb(x);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]||y==f) continue;
getpts(y,x);
}
}
void divcent(int x){
// printf("divcent %d\n",x);
vis[x]=1;dep[x]=0;vector<int> tot;tot.pb(x);
add(mn[x]-dep[x],2-deg[x]);stack<int> stk;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]) continue;
dep[y]=1;getdep(y,x);stk.push(y);
pt.clear();getpts(y,x);
for(int p:pt) res[p]+=query(dep[p]);
for(int p:pt) add(mn[p]-dep[p],2-deg[p]),tot.pb(p);
} for(int y:tot) add(mn[y]-dep[y],deg[y]-2);
tot.clear();
while(!stk.empty()){
int y=stk.top();stk.pop();
pt.clear();getpts(y,x);
for(int p:pt) res[p]+=query(dep[p]);
for(int p:pt) add(mn[p]-dep[p],2-deg[p]),tot.pb(p);
} res[x]+=query(dep[x]);
for(int y:tot) add(mn[y]-dep[y],deg[y]-2);
tot.clear();
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(vis[y]) continue;
cent=0;findcent(y,x,siz[y]);divcent(cent);
}
}
int main(){
// freopen("P4183_7.in","r",stdin);
scanf("%d",&n);
for(int i=1,u,v;i<n;i++){
scanf("%d%d",&u,&v);
adde(u,v);adde(v,u);deg[u]++;deg[v]++;
} dfs1(1,0);mnout[1]=INF;dfs2(1,0);
for(int i=1;i<=n;i++) mn[i]=min(mndep[i],mnout[i]);
// for(int i=1;i<=n;i++) printf("%d %d %d\n",mn[i],mndep[i],mnout[i]);
mx[0]=INF;findcent(1,0,n);divcent(cent);
for(int i=1;i<=n;i++) printf("%lld\n",res[i]);
return 0;
}
洛谷 P4183 - [USACO18JAN]Cow at Large P(点分治)的更多相关文章
- [洛谷P4183][USACO18JAN]Cow at Large P
题目链接 Bzoj崩了之后在洛谷偶然找到的点分好题! 在暴力的角度来说,如果我们$O(n)$枚举根节点,有没有办法在$O(n)$的时间内找到答案呢? 此时如果用树形$dp$的想法,发现是可做的,因为可 ...
- luogu P4183 [USACO18JAN]Cow at Large P
传送门 首先考虑N^2做法,每次从一个点出发,如果到达一个点,然后到达这个点的时间\(\le\)离这个点最近的叶子距离\(di_x\),那么答案+1,否则继续找点 这个暴力很不好优化.可以这样认为,如 ...
- [USACO18JAN]Cow at Large G(树形DP)
P4186 [USACO18JAN]Cow at Large G(树形DP) Luogu4186 设dp[i]表示i点需要放多少个农民.则有 \(if(near[i]-dep[i]<=dep[i ...
- 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...
- 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...
- 洛谷 P3714 - [BJOI2017]树的难题(点分治)
洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...
- 洛谷 P4181 [USACO18JAN]Rental Service
P4181 [USACO18JAN]Rental Service 题意翻译 farmer john有N(1≤N≤100,000)头牛,他想赚跟多的钱,所以他准备买牛奶和出租牛.有M(1≤M≤100,0 ...
- 洛谷P3611 [USACO17JAN]Cow Dance Show奶牛舞蹈
题目描述 After several months of rehearsal, the cows are just about ready to put on their annual dance p ...
- 洛谷P3120 [USACO15FEB]Cow Hopscotch
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented ...
随机推荐
- WEB安全指南
说明:本文是Mozilla Web应用部署文档,对运维或者后端开发团队的部署行为进行指导.该部署安全规范内容充实,对于部署有很大意义.同时也涉及到了许多web前端应用安全的基本知识,如CSP, TOK ...
- Beta阶段第二次会议
时间:2020.5.18 工作进展 姓名 工作 难度 完成度 ltx 1.在开小程序开发文档,学习相关知识 轻 85% xyq 1.完成活动场地申请可视化代码(耗时半天) 中 100% lm 1.设计 ...
- OO--第三单元规格化设计 博客作业
OO--第三单元规格化设计 博客作业 前言 第三单元,我们以JML为基础,先后完成了 PathContainer -> Graph -> RailwaySystem 这是一个递进的过程,代 ...
- kafka错误之 Topic xxx not present in metadata after 60000 ms
Topic xxx not present in metadata after 60000 ms 一.背景 二.场景还原 1.jar包引入 2.jar代码 3.运行结果 三.问题解决 四.参考文档 一 ...
- Noip模拟41 2021.8.16
T1 你相信引力吗 对于区间的大小关系问题,往往使用单调栈来解决 这道题的优弧和劣弧很烦,考虑将其等价的转化 由于所有的合法情况绕过的弧都不会经过最高的冰锥, 又因为环可以任意亲定起点,这样可以直接把 ...
- When overwhelmed, take a break
When overwhelmed by, frustrated with, or tired of the work, taking a break will help with thinking a ...
- Redis安装、配置和卸载
1.安装 mkdir /usr/local/redis 添加目录 wget [http://download.redis.io/releases/redis-4.0.1](http://downloa ...
- 攻防世界 WEB 高手进阶区 PHP2 Writeup
攻防世界 WEB 高手进阶区 PHP2 Writeup 题目介绍 题目考点 url 二次解码 index.phps 文件(第一次使用dirsearch可能扫不到,需要加到工具字典里) php 简单语法 ...
- Qt 使用大神插件快速创建树状导航栏
前言 本博客仅仅记录自己的采坑过程以及帮助网友避坑,方便以后快速使用自定义控件,避免重复出错. 下载插件 大神 Github Qt 自定义控件项目地址:https://github.com/feiya ...
- MYSQL5.7下载安装图文教程
MYSQL5.7下载安装图文教程 一. MYSQL两种安装包格式 MySQL安装文件分为两种,一种是msi格式的,一种是zip格式的.zip格式相当于绿色版,不需要安装,只需解压缩之后就可以使用了,但 ...